
The Future of Multi-core:
Tera-Scale Computing

James P. Held
Intel Fellow & Director,

Tera-Scale Computing Research

October 24, 2008

4th Software Engineering Conference (Russia) 2008

2

4th SEC(R) 2008

Legal Disclaimer

• INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS.
NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS
AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO
SALE AND/OR USE OF INTEL® PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING
TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT
INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS.

• Intel may make changes to specifications and product descriptions at any time, without notice.

• All products, dates, and figures specified are preliminary based on current expectations, and
are subject to change without notice.

• Intel, processors, chipsets, and desktop boards may contain design defects or errors known as
errata, which may cause the product to deviate from published specifications. Current
characterized errata are available on request.

• Performance tests and ratings are measured using specific computer systems and/or
components and reflect the approximate performance of Intel products as measured by those
tests. Any difference in system hardware or software design or configuration may affect actual
performance.

• Intel, Intel Inside, and the Intel logo are trademarks of Intel Corporation in the United States
and other countries.

• *Other names and brands may be claimed as the property of others.

• Copyright © 2008 Intel Corporation.

3

4th SEC(R) 2008

Agenda

• Tera-scale

– Motivation

– Platform Vision

• Research Challenges

– Applications

– Hardware

– Programming

• Tera-scale and Future Product

• UPCRC

• Summary

4

4th SEC(R) 2008

What is Tera-scale?
TIPs of compute power operating on Tera-bytes of data

Terabytes

TIPS

Gigabytes

MIPS

Megabytes

GIPS

P
e

rf
o

rm
a

n
ce

Dataset Size

Kilobytes

KIPS

Tera-scale

Multi-core

Single-core

Mult-

Media

3D &

Video

Text

RMS Personal Media
Creation and
Management

Learning &
Travel

Entertainment

Health

Source: electronic visualization lab University of Illinois

http://techresearch.intel.com/articles/Tera-Scale/1421.htm

5

4th SEC(R) 2008

A Tera-scale Platform Vision

Scalable On-die Interconnect Fabric

Special
Purpose
Engines

Integrated IO
devices

Integrated
Memory

Controllers

High Bandwidth
Memory

Off Die
interconnect

IO
Socket
Inter-

Connect

Cache Cache Cache

Last Level

Cache

Last Level

Cache

Last Level

Cache

6

4th SEC(R) 2008

Tera-scale Research Challenges

Cores – power efficient general & special function

On-Die Interconnect – High bandwidth, low latency

Memory Hierarchy – Feed the compute engine

System Software – Scalable services

Programming – Empower the mainstream

Applications – Identify, characterize & optimize

7

4th SEC(R) 2008

MODEL-BASED

A Top-down Approach to Analysis

NUMERICAL METHODS
& DATA STRUCTURES

Web search

R

Facial

Animation

Ray

Tracing
Cancer

Detection

Body
Tracking

M

S

Data

Warehousing

Media
Indexing

Financial

Predictions

Virtual

Worlds

Security
Biometrics

Collision

Detection

Classifiers

Geometric

Structures

Optimization

Methods

Vector

Training

Monte

Carlo
MATHEMATICAL

MODELS & METHODS

Hardware
Improvements

8

4th SEC(R) 2008

Application Kernel Scaling

0 16 32 48 64

P
a
ra

ll
e
l
S

p
e
e
d

u
p

Cores

Production Fluid

Production Face

Production Cloth

Game Fluid

Game Rigid Body

Game Cloth

Marching Cubes

Sports Video Analysis

Video Cast Indexing

Home Video Editing

Text Indexing

Ray Tracing

Foreground Estimation

Human Body Tracker

Portifolio Management

Geometric Mean

Graphics Rendering – Physical Simulation -- Vision – Data Mining -- Analytics

http://graphics.stanford.edu/~fedkiw/animations/water_oil.avi

9

4th SEC(R) 2008

Application Acceleration:
HW Task Queues

88% benefit optimized S/W 98% benefit over optimized S/W

Loop Level Parallelism Task Level Parallelism

GTUC1

$1
C2

C7

Cn
$m

$5

Core

L1 $ LTU

Global Task Unit (GTU)

Caches the task pool

Uses distributed task stealing

Local Task Unit (LTU)

Prefetches and buffers tasks

GTU

Carbon: Architectural Support for Fine-Grained Parallelism on Chip Multiprocessors. Sanjeev Kumar
Christopher J. Hughes Anthony Nguyen, ISCA’07, June 9–13, 2007, San Diego, California, USA.

Task Queues

• scale effectively to many cores

• deal with asymmetry

• supports task & loop parallelism

10

4th SEC(R) 2008

Teraflops Research Processor

Goals:

• Deliver Tera-scale performance
– Single precision TFLOP at desktop power

– Frequency target 5GHz

– Bi-section B/W order of Terabits/s

– Link bandwidth in hundreds of GB/s

• Prototype two key technologies
– On-die interconnect fabric

– 3D stacked memory

• Develop a scalable design
methodology
– Tiled design approach

– Mesochronous clocking

– Power-aware capability

I/O Area

I/O Area

PLL

single tile

1.5mm

2.0mm

TAP

2
1

.7
2

m
m

I/O Area

PLL TAP

12.64mm

65nm, 1 poly, 8 metal (Cu)Technology

100 Million (full-chip)

1.2 Million (tile)

Transistors

275mm2 (full-chip)

3mm2 (tile)

Die Area

8390C4 bumps #

65nm, 1 poly, 8 metal (Cu)Technology

100 Million (full-chip)

1.2 Million (tile)

Transistors

275mm2 (full-chip)

3mm2 (tile)

Die Area

8390C4 bumps #

11

4th SEC(R) 2008

Power Performance Results

0

1

2

3

4

5

6

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
Vcc (V)

F
re

q
u

e
n

c
y
 (

G
H

z
) 80°C

N=80

(0.32 TFLOP)
1GHz

(1 TFLOP)
3.16GHz

(1.81 TFLOP)
5.67GHz

(1.63 TFLOP)
5.1GHz

Peak Performance Average Power Efficiency

LeakageMeasured Power

0

25

50

75

100

125

150

175

200

225

250

0.70 0.80 0.90 1.00 1.10 1.20 1.30

Vcc (V)

P
o

w
e
r

 (
W

)

Active Power

Leakage Power

78

15.6

152

26

1.33TFLOP @ 230W80°C, N=80

1TFLOP @ 97W

Stencil: 1TFLOP @ 97W, 1.07V; All tiles awake/asleep

0

5

10

15

20

200 400 600 800 1000 1200 1400

GFLOPS

G
F

L
O

P
S

/W

80°C
N=80

5.8

19.4

394 GFLOPS

10.5

0%

4%

8%

12%

16%

0.70 0.80 0.90 1.00 1.10 1.20 1.30

Vcc (V)

%
 T

o
ta

l
P

o
w

e
r

Sleep disabled

Sleep enabled

80°C

N=80

2X

Vangal, S., et al., “An 80-Tile 1.28TFLOPS Network-on-Chip in 65 nm CMOS,”

in Proceedings of ISSCC 2007(IEEE International Solid-State Circuits Conference), Feb. 12, 2007.

12

4th SEC(R) 2008

On-Socket DRAM Caches
For Memory Scalability

• Enable Large Capacity L4s

– Low Latency

– High Bandwidth

• Technologies

– Multi-chip Packages (MCP)

– 3D Stacking

• Benefits

– Significant Miss Rate Reduction

– Avoids bandwidth wall

– At better latency

3D stack
>1TB/s

Proc

DRAM
$

Proc DRAM
$

MCP
~200MB/s

Iyer, R, et al, “Datacenter-on-Chip Architectures: Tera-scale Opportunities and Challenges”, and
Polka, LA et al, “Package Technology to Address the Memory Bandwidth Challenge for Tera-scale”, Computing”,
Intel Technology Journal, Volume 11, Issue 3, 2007

Cache Performance of DoC Workloads

13

4th SEC(R) 2008

Work in Progress:
Stacked Memory Prototype

80 tile processor with Cu bumps

Package

“Polaris”

C4 pitch

Denser than C4 pitch

256 KB SRAM per core

4X C4 bump density

3200 thru-silicon vias

Thru-Silicon
Via

Memory “Freya”

Package

Memory access to match the compute power

14

4th SEC(R) 2008

Programming Environment
Research

• Languages & programming abstractions
– Transactional Memory
– Data parallel operations
– Lightweight tasks
– Fine-grain synchronization
– Message passing

• Compilers
– Multi-language support
– Optimizations for Prog. Abst.
– Dynamic & static compilation
– Speculative multithreading

• Many-core runtime scalability
– Efficient scalable support for

Programming Abstractions

MCA HW & scalable execution environment

Libraries &
frameworks
• Language-specific
• RMS
• Game engine

Concurrency
front end

Single-core
compiler

Languages & abstractions

Tools
• Design
• Test
• Debug
• Tune

Many-core runtime

Parallel RMS workloads

15

4th SEC(R) 2008

Many Core Runtime

Scheduler Synchronization

Transactional
memory

Memory
management

Data parallel
operations

Exception
handling

Lightweight
tasks

Fine-grain
Synch.

Many-core
runtime

…

MCA simulators & FPGA 16-way SMP

Parallel RMS workloads

Libraries &
frameworks

Concurrency
front end

Single-core
compiler

Languages & abstractions

Tools

…

OpenMP PThreads Java …

16

4th SEC(R) 2008

Many Core Runtime
Performance & Scalability

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16

S
p

e
e
d

u
p

 o
v

e
r

a
 s

in
g

le
 c

o
re

 (
4
 t

h
re

a
d

s
)

Number of cores (4 threads per core)

RMS & XvidD scalability McRT

Linear

SVD

XviD - 1080P

SOM

BME

0

10

20

30

40

50

10 100 1000 10000

T
im

e
 (

µ
s
e

c
)

Number of threads

Scalability of McRT Threads

Linux 2.6.9 (NPTL)

McRT Threads

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70

R
a
ti
o

Threads

Comparison of futures and threads

B Saha, A Adl-Tabatabai, et al. “Enabling Scalability and Performance in a Large
Scale CMP Environment. “ in Eurosys’07, March 21-23, 2007, Lisbon, Portugal.

17

4th SEC(R) 2008

Transactional Memory

• Definitions
– Memory transaction: A sequence of memory operations that either

execute completely (commit) or have no effect (abort)

– Atomic: An “all or nothing” sequence of operations

> On commit, all memory operations appear to take effect as a unit

> On abort, none of the stores appear to take effect

– Transactions run in isolation

> Effects of stores are not visible until transaction commits

> No concurrent conflicting accesses by other transactions

• Goal – an atomic block language construct
– As easy to use as coarse-gain locks,

but with the scalability of fine-grain locks

– Safe and scalable composition of SW modules

– Transactional execution

> Isolated: No interference from other threads

> Atomic: All-or-nothing sequence of operations

18

4th SEC(R) 2008

Intel C/C++ TM compiler

• Based on production Intel C/C++ compiler

• Downloadable from http://whatif.intel.com
– Use for experimentation & workload development

– Provide feedback on language extensions

• State-of-the-art STM runtime
– Multiple STM algorithms + dynamic mode switching

– Support for calling legacy code & I/O inside transactions

– Optimized transactional malloc & free

Execute block atomically __tm_atomic {S}

Abort transaction __tm_abort

Declare transactional functions, classes & templates

__attribute__((tm_callable)) void foo(…);

__attribute__((tm_callable))

class Bar {virtual void foo(…);}

http://softwarecommunity.intel.com/articles/eng/1460.htm

19

4th SEC(R) 2008

Results: SPLASH-2

Execution time for Barnes Hut

0

2

4

6

8

10

12

0 5 10 15 20

Number of concurrent threads
T

im
e

 (
s

e
c

o
n

d
s

)

Execution time for FMM

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 5 10 15 20

Number of concurrent threads

T
im

e
 (

s
e

c
o

n
d

s
)

coarse-lock

locks

STM

STM scales well but has single-thread overhead

20

4th SEC(R) 2008

TM challenges

Lack of TM application development experience
– Are annotations intrusive?

– Is failure atomicity important?

– Which libraries should be supported?

– Do atomic blocks really help the programmer?

Debug, performance & development tools

Extending atomic block semantics
– Nested parallelism

– Co-ordination

– Open nesting

Language-level memory model for TM
– Strong atomicity – full isolation

– Weak atomicity – isolation between transactions only

21

4th SEC(R) 2008

Ct: Nested Data Parallel
Programming

• Race-free programming with on-the-fly, automatic generation
of threads tailored to user’s multi-core hardware

• Simpler, high performance, scalable, SSE-friendly code

• Library-like interface compatible with existing programming
environments and APIs

CCtTVEC<double> sparseMatrixVectorProduct(

CCtVEC<double> A, CCtVEC<int> rowindex,

CCtVEC<int> cols, CCtVEC<double> v)

{

CCtVEC expv = ctDistribute(v,cols);

CCtVEC product = A*expv;

return ctMultiReduceSum(product,rowindex);

}

Extends C/C++ by Adding New Parallel
Data Structures & Operators

Ghuloum, A, et al, “Future Proof Data Parallel Algorithms and Software on Intel Multi-core Architecture”
Intel Technology Journal, Volume 11, Issue 4, 2007

22

4th SEC(R) 2008

Data parallel vector sum

Non-SIMD

+ + + + + +. . .1 01 0 1 0 1

7

SIMD

1 1 0 00 1 0 1 0 1 0 00 0 111

1 1 0 00 1 0 1 0 1 0 00 0 1 1

2 2 0 00 2 0 2 0 2 0 00 0 2 2

1

+

=

++ + + + +. . .2 02 2 0 0 2

14

VEC B;
. . .
x = Sum_Of_Elements(B);

Data parallel
program

Data parallel compiler
& runtimeAutomatic mapping

based on vector size
and architecture

Compiler
understands and
optimizes data

parallel operations

Data Parallelism Manages Parallelism
Without Exposing Threads

1 1 0 00 1 0 1 0 1 0 00 0 1 1

1 1 0 00 1 0 1 0 1 0 00 0 1 1

2 2 0 00 2 0 2 0 2 0 00 0 2 2

+

=

2 2 0 00 2 0 2 0 2 0 00 0 2 2

2 2 0 00 2 0 2 0 2 0 00 0 2 2

4 4 0 00 4 0 4 0 4 0 00 0 4 4

+

=

+ + + + + +. . .4 04 4 0 0 4

28

1 1 0 00 1 0 1 0 1 0 00 0 1 1

1 1 0 00 1 0 1 0 1 0 00 0 1 1

2 2 0 00 2 0 2 0 2 0 00 0 2 2

+

=

Multi-core

23

4th SEC(R) 2008

Accelerator Exoskeleton –
Heterogeneous Multi-core

CPUCPU

Wang, P et al. “Accelerator Exoskeleton” in
Intel Technology Journal, Volume 11, Issue 4, 2007

R. Hankins, et al, “Multiple Instruction Stream Processor”, in
Proceedings of the 33rd ISCA, June 2006.

• Provides user-level access to heterogeneous processing

– ISA alternative to OS device driver model

– Runtime support for integrated programming environment

24

4th SEC(R) 2008

Accelerator Exoskeleton –
Heterogeneous Multi-core

Wang, P et al. “Accelerator Exoskeleton” in
Intel Technology Journal, Volume 11, Issue 4, 2007

R. Hankins, et al, “Multiple Instruction Stream Processor”, in
Proceedings of the 33rd ISCA, June 2006.

• Provides user-level access to heterogeneous processing

– ISA alternative to OS device driver model

– Runtime support for integrated programming environment

• Multi-Instruction Stream Processor (MISP) “Exoskeleton”

– Signaling instruction and proxy execution

– Address Translation Remapping

– Collaborative Exception Handling

Heterogeneous

Accelerator

ATR

CEH

OS

TLB
Exception

handlers

OS-Managed

Sequencer

M
S

P
 E

x
o

s
k
e

le
to

n TLB
Exception

handlers

Signal

25

4th SEC(R) 2008

Exo-Programming Environment:
C for Heterogeneous Integration

• Programming model

• Multiple “shreds” within a single OS

thread context

• Shared virtual address space

• Heterogeneous sequencers directly

exposed to application

• Compiler & user-level runtime

• Modified front-end and

OpenMP pragmas

• Fork/join

• Producer/consumer parallelism

• “Fat” binary

• Extensible to multiple types of

heterogeneous cores

Inline Data-stream Programming Language

J. Hoffman, D. A. Ilitzky, A. Chun, A. Chapyzhenka,
“Architecture of Scalable Communication Core,”
in First International Symposium on Networks-on-Chip, 2007.

26

4th SEC(R) 2008

Larrabee Architecture for Visual Computing

Many IA cores

– Scalable to TeraFLOPS

New cache architecture

Throughput architecture

New vector instruction set

– Vector memory operations

– Conditionals

– Integer and FP arithmetic

New vector processing unit /
wide SIMD

Teraflops on IA product

Pat Gelsinger Keynote - Intel IDF Spring 2008

Seiler, L. et al. “Larrabee: A many-core x86 architecture for visual computing.”

SIGGRAPH ‘08: ACM SIGGRAPH 2008 Papers, ACM Pres, New York.

27

4th SEC(R) 2008

Making Parallel Computing Pervasive

Enabling
Parallel

Computing

Academic Research

UPCRCs

Software
Products

Multi-core
Education

TBB Open Sourced

STM-Enabled Compiler on
Whatif.intel.com

Parallel Benchmarks at
Princeton’s PARSEC site

HW/SW R&D
program to enable

Intel products
3-7+ in future

Intel Tera-scale
Research

Academic research
seeking disruptive
innovations 7-10+

years out

Community and
Experimental Tools

Wide array of leading
multi-core SW

development tools & info
available today

Multi-core Education Program
400+ Universities
25,000+ students
2008 Goal: Double this

Intel® Academic Community

Threading for Multi-core SW
community

Multi-core books

28

4th SEC(R) 2008

UPCRC Partners in Research

Professor David Patterson
UCB UPCRC Director

Prof. Marc Snir

Prof. Wen-Mei Hwu

UIUC UPCRC
Co-Directors

 Intel & Microsoft provide funding and guidance

 Universities direct groundbreaking research

29

4th SEC(R) 2008

Summary

• Intel research is addressing the challenges of
parallel computing with Intel platforms

– Teraflop hardware performance within mainstream power
and cost constraints

– ISA enhancements to address emerging workload
requirements

– Language and runtimes to better support parallel
programming models

– Partnering with Microsoft to support academic research

• Intel is developing hardware and software
technologies to enable Tera-scale computing

