
Stanford, Nov 07Copyright © 2007, Intel Corporation

Parallel Programming 2.0Parallel Programming 2.0

Wei LiWei Li
Senior Principal EngineerSenior Principal Engineer

Director, Emerging Products LabDirector, Emerging Products Lab

Santa Clara, CaliforniaSanta Clara, California
USAUSA

2Copyright © 2008, Intel Corporation

QuizQuiz

How old is Intel? How old is Intel?

–– 10 years10 years

–– 20 years20 years

–– 30 years30 years

–– 40 years40 years

Please look for the Celebration Ball at the Intel booth to win Please look for the Celebration Ball at the Intel booth to win

a prize!a prize!

3Copyright © 2008, Intel Corporation

AgendaAgenda

Why Parallel Programming 2.0? Why Parallel Programming 2.0?

A Case StudyA Case Study

Intel Software ProductsIntel Software Products

4Copyright © 2008, Intel Corporation

Historical Driving ForceHistorical Driving Force

1

10

100

1000

10000

100000

1970 1980 1990 2000 2010 2020
1

10

100

1000

10000

100000

1970 1980 1990 2000 2010 2020

Increased PerformanceIncreased Performance
via Increased Frequencyvia Increased Frequency

FrequencyFrequency
(MHz)(MHz)

20052005
65nm65nm

1B+ Transistors1B+ Transistors

19461946
20 Numbers20 Numbers

in Main Memoryin Main Memory

19711971
I4004 ProcessorI4004 Processor
2300 Transistors2300 Transistors

20072007
45nm45nm

20092009
32nm32nm

5Copyright © 2008, Intel Corporation

The ChallengeThe Challenge

Unsustainable Power GrowthUnsustainable Power Growth

Power LimitationsPower Limitations

0

5

10

15

20

25

30

0 2 4 6 8
Scalar Performance

Po
w

er power = perf ^ 1.74

Pentium M

i486 Pentium

Pentium Pro

Pentium 4 (Wmt)

Pentium 4 (Psc)

Power growing faster
than performance

Power and performance normalized to i486

6Copyright © 2008, Intel Corporation

MULTIMULTI--CORE MOTIVATIONCORE MOTIVATION

OverOver--clockedclocked
(+20%)(+20%)

1.00x1.00x

Relative singleRelative single--core frequency and core frequency and VccVcc

1.73x1.73x

1.13x1.13x

DesignDesign
FrequencyFrequency

PowerPower

PerformancePerformance

DualDual--corecore
((--20%)20%)

1.02x1.02x

1.73x1.73x

DualDual--CoreCore

0.51x0.51x

0.87x0.87x

UnderUnder--clockedclocked
((--20%)20%)

7Copyright © 2008, Intel Corporation

Approaching 100% of processors
are parallel processors

8Copyright © 2008, Intel Corporation

MultiMulti--core is performance delivered core is performance delivered
in a new way.in a new way.

Our job is to make sure the Our job is to make sure the
software industry makes the most software industry makes the most
of that performance.of that performance.

9Copyright © 2008, Intel Corporation

The Burden on SoftwareThe Burden on Software
Pe

rf
or

m
an

ce

GHz Era

Time

Application Performance

Platform Potential

10Copyright © 2008, Intel Corporation

Pe
rf

or
m

an
ce

GHz Era

Time

Multi-core Era

Application Performance

Platform Potential
Growing Gap

The Burden on SoftwareThe Burden on Software

11Copyright © 2008, Intel Corporation

Virtual
Container
VMM:

Parallelism at many levelsParallelism at many levels

OS OS OS

Operating
System:

App App App

Application: Thread Thread Thread

Thread: Code
Fragment

Code
Segment

Code
Fragment

12Copyright © 2008, Intel Corporation

Parallel Programming 1.0Parallel Programming 1.0
HPC applications for peak performanceHPC applications for peak performance
Manual, lots of hand tuning by expertsManual, lots of hand tuning by experts

–– Difficult, often not possible without specific toolsDifficult, often not possible without specific tools
–– Does not scale, need to reDoes not scale, need to re--do for each appdo for each app

Goals for Parallel Programming 2.0Goals for Parallel Programming 2.0
Mainstream applications, not peak performanceMainstream applications, not peak performance
High productivity programmingHigh productivity programming

–– Raise the level of programming abstraction Raise the level of programming abstraction –– easy to learn easy to learn
and parallelizeand parallelize

–– Make tools easy to use Make tools easy to use –– Ph.D. not requiredPh.D. not required
–– Bring parallelism to mainstream programming Bring parallelism to mainstream programming ––

undergraduateundergraduate--levellevel

13Copyright © 2008, Intel Corporation

AgendaAgenda

Why Parallel Programming 2.0?Why Parallel Programming 2.0?

A Case StudyA Case Study

Intel Software ProductsIntel Software Products

14Copyright © 2008, Intel Corporation

Example: Threading the Example: Threading the
CompilerCompiler

Compiler {

Read options

For Each line
parse
update Tables

End

For Each Function
Optimize_func()

End
}

Global_opts {

For Each Block
For Each Inst
If()
End

End

}
Generate_obj {
Generate_mem
For Each Block
For Each Inst
encode
write

End
End

}

Optimize_func {
Count loops

Global_opts
Translate
Local_opts
Allocate_regs
Generate_obj

}

main.c control.c opt_gen.c

15Copyright © 2008, Intel Corporation

ParallelizationParallelization

Compiler {

Read options

For Each line
parse
update Tables

End
//parallel
For Each Function
Optimize_func()

End
}

Global_opts {

For Each Block
For Each Inst
If()
End

End

}
Generate_obj {
Generate_mem
For Each Block
For Each Inst
encode
write

End
End

}

Optimize_func {
Count loops

Global_opts
Translate
Local_opts
Allocate_regs
Generate_obj

}

16Copyright © 2008, Intel Corporation

Global VariablesGlobal Variables

Compiler {
threshold=false
Read options

For Each line
parse
update Tables

End
//parallel
For Each Function
Optimize_func()

End
}

Global_opts {
if !threshold{
For Each Block
For Each Inst
If()
End

End
}

}
Generate_obj {
Generate_mem
For Each Block
For Each Inst
encode
write

End
End

}

Optimize_func {
Count loops
if(loops>100)
threshold=True
Global_opts
Translate
Local_opts
Allocate_regs
Generate_obj

}

17Copyright © 2008, Intel Corporation

CharacteristicsCharacteristics

Parallelizable code spread across ~100 Parallelizable code spread across ~100
modules and ~100 thousand lines of code modules and ~100 thousand lines of code
Global variablesGlobal variables
––3787 global symbols!! 3787 global symbols!!
––Large number of global variables written in loop Large number of global variables written in loop

Serial portionSerial portion
––asmasm and object generationand object generation

18Copyright © 2008, Intel Corporation

Dealing with Dealing with GlobalsGlobals

Identify Identify globalsglobals without cross iteration without cross iteration
dependencedependence
––Only read in loopOnly read in loop
––PrivatizablePrivatizable

Identify Identify globalsglobals with cross iteration with cross iteration
dependencedependence
––Reduction for counters, timers, statisticsReduction for counters, timers, statistics

GlobalsGlobals requiring synchronizationrequiring synchronization
––I/OI/O

19Copyright © 2008, Intel Corporation

AgendaAgenda

Why Parallel Programming 2.0?Why Parallel Programming 2.0?

A Case StudyA Case Study

Intel Software ProductsIntel Software Products

20Copyright © 2008, Intel Corporation

Software @ IntelSoftware @ Intel

Ensure Intel Architecture is the platform Ensure Intel Architecture is the platform
of choice by:of choice by:

–– Software ecosystem coSoftware ecosystem co--development & development &
enabling enabling

–– Leadership developer productsLeadership developer products
–– Development of Intel platform software & Development of Intel platform software &

servicesservices

21Copyright © 2008, Intel Corporation

Intel SW sitesIntel SW sites

Israel / Western Europe

Koln, Germany
Munich, Germany
Ulm, Germany
Haifa, Israel
Stockholm, Sweden
Swindon, UK

Winnersh, UK

Western
United States

Arizona
Folsom, CA
Santa Clara, CA
Southern CA
Colorado
New Mexico
Oregon
Utah
Washington

Eastern / Midwestern
United States

Illinois
Massachusetts
New Hampshire
Texas
Virginia

South America
Argentina

Moscow
Nizhniy
Novgorod
Novosibirsk
Sarov
St. Petersburg

Beijing
Hong Kong
Shanghai
Shenzhen
Xi’An

Asia

Sydney, Australia
Bangalore, India
Mumbai, India
Japan

Our global presence
helps us keep a pulse on
developing markets and
emerging technologies

22Copyright © 2008, Intel Corporation

Development Across EnvironmentsDevelopment Across Environments

Mobile
Tools

Digital Home
Tools

Cluster
Tools

Threading
Tools

Performance
Libraries

VTune™
Analyzers

Compilers

23Copyright © 2008, Intel Corporation

Parallelization MethodologyParallelization Methodology

Design

Code

Debug

Tune

24Copyright © 2008, Intel Corporation

Introduce Threads

• Compilers
• Built-in

optimization
• OpenMP

• Libraries
• Media
• Math Processing
• Threading
• XML

Confidence/Correctness

• Intel® Thread
Checker
• Find deadlocks

and race
conditions

Architectural Analysis

• VTune™ Analyzer
• Find the code

that can benefit
from threading

• Find hotspots
that limit
performance

Optimize / Tune

• VTune Analyzer
• Tune for

performance
and scalability

• Intel® Thread
Profiler
• Visualize

efficiency of
threaded code

Development with Intel® Tools

25Copyright © 2008, Intel Corporation

Unstructured Windows Threads: Unstructured Windows Threads:
too low leveltoo low level

#include <#include <iostreamiostream>>
#include <#include <windows.hwindows.h>>
using namespace std;using namespace std;
const const intint numThreadsnumThreads = 4;= 4;

DWORD WINAPI DWORD WINAPI HelloFuncHelloFunc (LPVOID (LPVOID argarg))
{ {

coutcout << << ““Hello ThreadHello Thread\\nn””; ;
return 0;return 0;

}}
main ()main ()
{{

HANDLE HANDLE hThread[numThreadshThread[numThreads];];

for (for (intint i = 0; i < i = 0; i < numThreadsnumThreads; i++); i++)
hThread[ihThread[i] =] =

CreateThreadCreateThread (NULL, 0, (NULL, 0, HelloFuncHelloFunc, NULL, 0, NULL);, NULL, 0, NULL);

WaitForMultipleObjectsWaitForMultipleObjects ((numThreadsnumThreads, , hThreadhThread, TRUE, INFINITE);, TRUE, INFINITE);
}}

26Copyright © 2008, Intel Corporation

Example: OpenMP Matrix Multiply

Each row can be
computed
independently

B

A C

#pragma omp parallel for shared(C)
private(i,j)

for (i = 0; i < M; i++)

for (j = 0; j < N; j++)

C[i][j] = 0.0;

#pragma omp parallel for
shared(A,B,C) private(i,j,k)

for (i = 0; i < M; i++)

for (k = 0; k < L; k++)

for (j = 0; j < N; j++)

C[i][j] +=

A[i][k] * B[k][j];

27Copyright © 2008, Intel Corporation

IntelIntel®® Threading Threading
Building BlocksBuilding Blocks
Extend C++ for parallelismExtend C++ for parallelism

FeaturesFeatures
–– A C++ runtime library that uses A C++ runtime library that uses

familiar task patterns, not threadsfamiliar task patterns, not threads
–– A high level abstraction requiring less A high level abstraction requiring less

code for threading without sacrificing code for threading without sacrificing
performanceperformance

–– Appropriately scales to the number of Appropriately scales to the number of
cores availablecores available

–– The thread library API is portable The thread library API is portable
across Linux, Windows, or Mac OS across Linux, Windows, or Mac OS
platformsplatforms

–– Works with all C++ compilers (i.e. Works with all C++ compilers (i.e.
Microsoft, GNU and Intel)Microsoft, GNU and Intel)

WhatWhat’’s News New
–– Open source version available at Open source version available at

www.threadingbuildingblocks.orgwww.threadingbuildingblocks.org
–– Auto_partitionerAuto_partitioner for better parallel for better parallel

algorithmsalgorithms
–– Microsoft Vista* supportMicrosoft Vista* support
–– Full, native 64 bit support for Mac OS Full, native 64 bit support for Mac OS

X*X*

28Copyright © 2008, Intel Corporation

coming soon… Intel® Parallel Studio
Helps programmers throughout the

development cycle

Design Code Debug Tune

Software products that help solve the
greatest parallelism challenges developers face

29Copyright © 2008, Intel Corporation

Intel® Parallel Advisor
Advisor is a new category of development product
Advisor helps understand where to add parallelism to
existing source code.
– How to implement threads and provide suggestions areas
– Spotlights where parallelism can be added
– Helps make better design decisions

– Shows consequences of decisions – identifies conflicts
– Suggest ways to resolve conflicts

Microsoft* Visual Studio* Integration
Beta mid-2009, product late 2009

Insight into where applications benefit most from parallelism

30Copyright © 2008, Intel Corporation

Intel® Parallel Composer

Simplifies threading for improved developer productivity
– “Think Parallel” and code it without low-level thread management

Enables Microsoft* Visual Studio* developers to add parallelism to
applications

Beta Q4 2008, product mid-2009

Speeds software development incorporating parallelism with a
C/C++ compiler and comprehensive threaded libraries

• Intel® Threading Building Blocks
• Support for lambda functions
• Pre-threaded domain-specific libraries
• Parallel debugging functionality
• Data parallel arrays
• Simple concurrency functions
• OpenMP* 3.0
• Auto-vectorization, auto-parallelization
• Innovative “Parallel Lint” helps detect

parallel errors at compile time
• Microsoft* Visual Studio* Integration

• Spawn/par
• Parallel debug plug-in.
• Intel® Integrated

Performance Primitives
(Intel® IPP)

• Interoperate with all other
Intel tools

• Parallel valarray
• Interoperate

with Microsoft
tools

31Copyright © 2008, Intel Corporation

Intel® Parallel Inspector

Inspector sets a “must use” standard for shipping stable and reliable
threaded applications – a proactive “bug finder.”
Does not require that application uses a single particular model of
parallelism to get safety.
Unlike traditional debuggers, Inspector detects hard-to-find threading
errors in multi-threaded C/C++ Windows applications.
– Root-cause analysis for crash-causing defects such as data races and deadlocks
– Automatically monitoring the runtime behavior of the code to ensure application

reliability
– Critical for nondeterministic (the execution sequence can

change from run to run) errors that are difficult to
reproduce

– Based on Intel® Thread Checker technology, plus more!

Microsoft* Visual Studio* Integration
Beta by January 2009, product mid-2009

Proactive “bug finder”; flexible tool to add reliability
regardless of parallelism models used

32Copyright © 2008, Intel Corporation

Intel® Parallel Amplifier

Amplifier makes it simple to quickly find multi-core performance
bottlenecks, for everyone – not just “experts”
– Provides quick access to scaling information for faster and improved

decision-making
– No need to know the processor architecture or assembly code
– Takes away the guesswork by accurately measuring programs

performance behavior
– Designed with significant user input – Intel application engineers,

customers, and Whatif.intel.com community (PTU)
– Makes Intel® Thread Profiler and

Intel® VTune Performance Analyzer technology
much more accessible

Microsoft* Visual Studio* Integration
Beta by January 2009, product mid-2009

Find unexpected serialization which limits scaling,
to optimize performance to use all processor cores.

33Copyright © 2008, Intel Corporation
33

Enabling the Next GenerationEnabling the Next Generation

Working with professors for teachingWorking with professors for teaching

Needed in all undergraduate
programming courses.

2006: 40 universities
2007: 407 universities
2008: 822 universities and growing

Over 65K students used
material from this program
already in 2008.

intel.com/software/college

We asked:
How can we share our

expertise (training)
for

professionals, and
help

educators?

34Copyright © 2008, Intel Corporation

W h a t I f . i n t e l . c o m
Access innovations… in the formative stages

Explore future processor instructions sets
• Intel® Software Development Emulator added AUGUST ‘08

Explore how to CODE for parallelism
• Intel® Concurrent Collections for C/C++ added mid-2008
• Intel® C++ Parallelism Exploration Compiler, Prototype
Edition

• Intel® Cluster OpenMP* for Intel® Compilers
• Intel® C++ STM Compiler, Prototype Edition 2.0

New analysis tools
• Intel® Platform Modeling with Machine Learning RECENT +
• Intel® Performance Tuning Utility 3.1 MOST POPULAR
• Intel® Integrated Debugger for Java*/JNI Environments

New libraries
• Intel® Adaptive Spike-Based Solver RECENT ADD
• Intel® Summary Statistics Library
• Intel® Decimal Floating-Point Math Library RECENT ADD
• Intel® Location Technologies Software Development Kit 1.0

New web technologies
• Intel® Mash Maker: Mashups for the Masses GRADUATE

35Copyright © 2008, Intel Corporation

STM Compiler on STM Compiler on
whatif.intel.comwhatif.intel.com

36Copyright © 2008, Intel Corporation

Alice transfer $20 from A to B
begin_xaction
A = A – 20
B = B + 20
end_xaction

Alice transfer $20 from A to B
Locks A
Locks B
A = A – 20
B = B + 20
Unlocks A
Unlocks B

Transactional MemoryTransactional Memory

A $100

B $200

C $200

LockLock

LockLock

LockLock

LockLock

LockLock

LockLock

A $100

B $200

C $200

Programmer
manually ensures no race

System
automatically ensures no race

37Copyright © 2008, Intel Corporation

A C++ Example using the prototypeA C++ Example using the prototype

int s = 0;

class B

{ public:

__declspec(tm_callable)

virtual void inc()
{

s = s + 1;
}

};

class C : public B

{ public:

__declspec(tm_callable)

void inc()
{

s = s + 1;
}

};

int main()
{ B *x, *y;

#pragma omp parallel sections
num_threads(2)

{
__tm_atomic {

x = new B();
x->inc();

}

#pragma omp section
__tm_atomic {

y = new C();
y->inc();

}
}

}

38Copyright © 2008, Intel Corporation

SummarySummary
Programming is not Programming is not ““EASYEASY””
–– Neither is parallel programmingNeither is parallel programming

There isnThere isn’’t one magic solution for Parallel t one magic solution for Parallel
Programming 2.0Programming 2.0
–– Methodology: design, code, debug, tuneMethodology: design, code, debug, tune

The right The right tools such as the Intel products will help tools such as the Intel products will help
make parallel programming EASIER.make parallel programming EASIER.

