Weli Li
Senior Principal Engineer
Director, Emerging Products Lab

Santa Clara, California
USA

How old is Intel?
— 10 years
— 20 years
— 30 years
— 40 years

Please look for the Celebration Ball at the Intel booth to win

a prize!

‘ II'ItElI: Copyright © 2008, Intel Corporation

Agenda

Why: Parallel Programming 2.07?
A Case Study

Intel Software Products

(II'ItElI: Copyright © 2008, Intel Corporation

Historical Driving Force

Increased Performance
via Increased Frequency

100000
10000 —
1000 .
Freguency E
(MHz) A _
10 3

1
1980; 1990 2000

20 Number 14004 Processorn 65nm
% in Main Memory. 2300 Transistors 1B+ Transistors

(II'ItElI Copyright © 2008, Intel Corporation

The Challenge

[Power Limitations]

Pentium 4 (Psc)

Pentium 4 (Wmt)

Power growing faster
than performance
0 2 4 6 8

Scalar Performance

Unsustainable Power Growth

MULTI-CORE MOTIVATION

B Dual-Core
1.73x Performance 1.73x
B Power
1.13x
10]0)
Over-clocked Design Unten-clocked
(+20%) Frequency (=20%%)

Relative single-core frequency and Vcc

Copyright © 2008, Intel Corporation

Approaching 100% of processors
are parallel processors

Percent of Worldwide Multi-core Processor 2006 - 2010

Desktop PC
Desktop PC

Desktop PC
Desktop PC
Desktop PC

2006 2007 2008 2009 2010

This graph shows a forecast of the percentage of PCs shipping with a processor containing two or more processor cores.

I Desktop PC
Source. B Mobile PC

Processor data: IDC Worldwide PC Semiconductor 2006-2011 Market Forecast |_| PC Server

Copyright © 2008, Intel Corporation

Multi-core is performance delivered
In @ hew way.

Our job is to make sure the
software industry makes the most
of that performance.

‘ lntel,: Copyright © 2008, Intel Corporation

The Burden on Software

II'ItEl Copyright © 2008, Intel Corporation

The Burden on Software

II'ItEl Copyright © 2008, Intel Corporation

Parallelism at many levels

Virtual

Container ‘ ‘

VMM:
l Operating
System: ‘ ‘

. Code Code Code
Thread

‘ II'ItElI Copyright © 2008, Intel Corporation

11

Parallel Programming 1.0
« HPC applications for peak performance

« Manual, lots of hand tuning by experts
— Difficult, often not possible without specific tools
— Does not scale, need to re-do for each app

Goals for Parallel Programming 2.0
« Mainstream applications, not peak performance
e High productivity programming

— Raise the level of programming abstraction — easy to learn
and parallelize

— Make tools easy to use — Ph.D. not required

— Bring parallelism to mainstream programming —
undergraduate-level

‘ lntel,: Copyright © 2008, Intel Corporation

12

Agenda

Why Parallel Programming 2.07
A Case Study

Intel Software Products

‘ II'ItElI: Copyright © 2008, Intel Corporation

13

Example: Threading the
Compiler

main.c control.c opt_gen.c

Compiler ({ Optimize func ({ Global opts {

Count loops
For Each Block

For Each Inst
If()
End
End

Read options

For Each line Global opts
parse Translate

update Tables Local_opts
End Allocate regs

Generate obj

}

Generate obj {
Generate mem
For Each Block

For Each Inst
encode
write

End

End

For Each Function
Optimize func()
End

Copyright © 2008, Intel Corporation

Parallelization

Compiler ({
Read options

For Each line
parse
update Tables
End
//parallel
For Each Function
Optimize func()
End

Optimize func ({
Count loops

Global opts
Translate
Local opts
Allocate regs
Generate obj

Copyright © 2008, Intel Corporation

Global opts {

For Each Block
For Each Inst
If()
End
End

}

Generate obj {
Generate mem
For Each Block

For Each Inst
encode
write

End

End

Global Variables

Compiler ({
threshold=false
Read options

For Each line
parse
update Tables
End
//parallel
For Each Function
Optimize func()
End

Copyright © 2008, Intel Corporation

Optimize func ({

Count loops
if (loops>100)
threshold=True

Global opts
Translate

Local opts
Allocate regs
Generate obj

Global opts {
if 'threshold{
For Each Block
For Each Inst
If()
End

}

Generate obj {
Generate mem
For Each Block

For Each Inst
encode
write

End

End

Characteristics

e Parallelizable code spread across ~100
modules and ~100 thousand lines of code

e Global variables
— 3787/ global symbols!!
—Large number of global variables written in loop

e Serial portion
—asm and object generation

‘ lntel,: Copyright © 2008, Intel Corporation

17

Dealing with Globals

 [dentify globals without cross iteration
dependence

—Only read in loop
— Privatizable

» [dentify globals with cross iteration
dependence

— Reduction for counters, timers, statistics

» Globals requiring synchronization
—-1/0

‘ lntel,: Copyright © 2008, Intel Corporation

18

Agenda

Why Parallel Programming 2.07
A Case Study

Intel Software Products

(II'ItElI: Copyright © 2008, Intel Corporation

19

Software @ Intel

Ensure Intel Architecture is the platform
of choice by:

— Software ecosystem co-development &
enabling

— Leadership developer products

— Development of Intel platform software &
SEervices

‘ lntel,: Copyright © 2008, Intel Corporation 0

Intel SW sites

Nizhniy
Novgorod
Novosibirsk

Copyright © 2008, Intel Corporation

Development Across Environments

/3
Microsoft f—’ . 5 D L-:EI |" EE'
Windows)

Compilers VTune™ Performance Threading Cluster Digital Home Mobile

Analyzers Libraries Tools Tools Tools Tools
@ OO S
Centrino Itanium' 2 Xeon
inside’™ inside’

‘ II'ItElI Copyright © 2008, Intel Corporation =

Parallelization Methodology

Help me tune
performance

Assist "tuning”’
parallelism

Copyright © 2008, Intel Corporation

Design

Help me
acommend what
I do

Assist “discovering”
parallelism

Debug

Help me have
confidence it will

work

Assist "debugging”
parallelism

lelp me
express

parallelism

upport standards,
C++/C, Fortran,
OpenMP 3.0,

23

Development with Intel® Tools

[

SOA

Security Toolkit

==Vl BNy =¥ = | ==V ==V
Architectural Analysis Introduce Threads Confidence/Correctness Optimize / Tune
e VTune™ Analyzer e Compilers e Intel® Thread e VTune Analyzer
e Find the code e Built-in Checker e Tune for
that can benefit optimization e Find deadlocks performance
from threading e OpenMP and race and scalability
e Find hotspots conditions
that limit e Libraries e Intel® Thread
performance e Media Profiler
e Math Processing e Visualize
e Threading efficiency of
e XML threaded code

‘ II'ItElI Copyright © 2008, Intel Corporation #

Unstructured Windows Threads:
too low level

#include <iostream>
#include <windows.h>
using namespace std;
const int numThreads = 4;

DWORD WINAPI HelloFunc (LPVOID arg)
{
cout << “Hello Thread\n”;
return O;
}
main ()

{
HANDLE hThread[numThreads] ;

for (int i = 0; i < numThreads; i++)
hThread[i] =
CreateThread (NULL, O, HelloFunc, NULL, O, NULL),

WaitForMultipleObjects (numThreads, hThread, TRUE, INFINITE) ;

Copyright © 2008, Intel Corporation

25

Example: OpenMP Matrix Multiply

Each row can be
computed
independently

#pragma omp parallel for shared(C)
private (i, j)

for (i = 0; i < M; i++)
for (J = 0; J < N; Jj++)
Clil[j] = 0.0;

#pragma omp parallel for
shared(A,B,C) private(i, j, k)

for (i = 0; i < M; i++)
for (k = 0; k < L; k++)
for (jJ = 0; jJj < N; j++)
C[i] [3] +=
A[i] [k] * B[k][]]~

(II'ItElI: Copyright © 2008, Intel Corporation

26

“We're excited about the potential of
Intel® Threading Building Blocks to bring
scalable performance automatically,
without requiring us to update our code
to support the latest multi-core processor.

Intel® Threading

Building Blocks
Extend C++ for parallelism

e Features

— A C4++ runtime library that uses
familiar task patterns, not threads

Gerry Hawkins

Maya Team Leader
Media & Entertainment
Autodesk

— A high level abstraction requirin

less
code for threading without sacrificing
performance

Appropriately scales to the humber of
cores available

The thread library API is portable
across Linux, Windows, or Mac OS
platforms

Works with all C++ compilers (i.e.
Microsoft, GNU and Intel)

e What's New

o

Open source version available at

Auto_partitioner for better parallel
algorithms

Microsoft Vista™ support
I;(ELII, native 64 bit support for Mac OS

Copyright © 2008, Intel Corporation

Application Seekin

g Multi-threaded

Performance and Scalability

-

el

Intel® Threading Building Blocks
Highly Optimized C++ Templates for Parallelism

Parallel
Algorithm
Templates

v" parallel for
reduce

¥ scan (prefix)

v while

v pipeline

v sort

Thread-safe
Concurrent
Containers

v hash maps
v queues
v vectors

Low Level
Threading
Functions

¥" scalable memory
allocator

¥ synchronization
primitives

v global time
stamp

v task scheduler

Optimize&; Scalable
Multi-Core Performance

27

coming soon... Intel® Parallel Studio
Helps programmers throughout the
development cycle

Intel® Intel” Intel’ Intel®

Parallel Parallel Parallel Parallel

“ Advisor e Compos “ Inspector v Amplifier

Software products that help solve the
greatest parallelism challenges developers face

‘ II'ItElI Copyright © 2008, Intel Corporation 8

Intel® Parallel Advisor

Insight into where applications benefit most from parallelism
* Advisor is a new category of development product

e Advisor helps understand where to add parallelism to
existing source code.

— How to implement threads and provide suggestions areas
— Spotlights where parallelism can be added

— Helps make better design decisions
— Shows consequences of decisions - identifies conflicts
— Suggest ways to resolve conflicts

 Microsoft™ Visual Studio™ Integration T
e Beta mid-2009, product late 2009

Intel®

Parallel

“" Advisor

‘ II'ItElI: Copyright © 2008, Intel Corporation

29

Intel® Parallel Composer

Speeds software development incorporating parallelism with a
C/C++ compiler and comprehensive threaded libraries

« Simplifies threading for improved developer productivity
- “Think Parallel” and code it without low-level thread management

 Enables Microsoft* Visual Studio* developers to add parallelism to

 Beta Q4 2008, product mid-2009

applications
« Intel® Threading Building Blocks « Spawn/par
« Support for lambda functions « Parallel debug plug-in.
 Pre-threaded domain-specific libraries < Intel® Integrated
» Parallel debugging functionality Performance Primitives
« Data parallel arrays (Intel® IPP)
« Simple concurrency functions « Interoperate with all other
« OpenMP* 3.0 Intel tools
- Auto-vectorization, auto-parallelization < Parallel valarray (@D
« Innovative “Parallel Lint” helps detect < Interoperate
parallel errors at compile time with Microsoft
« Microsoft™ Visual Studio™ Integration tools Para"el

s Composer

‘ II'ItElI: Copyright © 2008, Intel Corporation

.-""'...

Intel® Parallel Inspector

Proactive “bug finder”; flexible tool to add reliability
regardless of parallelism models used

Inspector sets a "must use” standard for shipping stable and reliable
threaded applications - a proactive “bug finder.”

Does not require that application uses a single particular model of
parallelism to get safety.

Unlike traditional debuggers, Inspector detects hard-to-find threading
errors in multi-threaded C/C++ Windows applications.
- Root-cause analysis for crash-causing defects such as data races and deadlocks

— Automatically monitoring the runtime behavior of the code to ensure application
reliability

— Critical for nondeterministic (the execution sequence can
change from run to run) errors that are difficult to
reproduce (intel

— Based on Intel® Thread Checker technology, plus more!

Microsoft™ Visual Studio™ Integration
Beta by January 2009, product mid-2009

Intel®

Parallel

e Inspector

‘ II'ItEll} Copyright © 2008, Intel Corporation

Intel® Parallel Amplifier

Find unexpected serialization which limits scaling,
to optimize performance to use all processor cores.

 Amplifier makes it simple to quickly find multi-core performance
bottlenecks, for everyone - not just “experts”
— Provides quick access to scaling information for faster and improved
decision-making
— No need to know the processor architecture or assembly code

— Takes away the guesswork by accurately measuring programs
performance behavior

— Designed with significant user input - Intel application engineers,
customers, and Whatif.intel.com community (PTU)

- Makes Intel® Thread Profiler and
Intel®e VTune Performance Analyzer technology (intel
much more accessible

* Microsoft™ Visual Studio™ Integration
 Beta by January 2009, product mid-2009

Intel’

Parallel

e Amplifier

.-""'...

‘ II'ItEll} Copyright © 2008, Intel Corporation

Enabling the Next Generation

Working with professors for teaching

We asked:

How can we share our
expertise (training)
for
professionals, and
help
educators?

(II'ItElI: Copyright © 2008, Intel Corporation

Needed in all undergraduate
programming courses.

2006: 40 universities
2007: 407 universities
2008: 822 universities and growing

Over 65K students used

material from this program
already in 2008.

intel.com/software/college

) — Whatlf.intel.com

Access innovations... in the formative stages

Explore future processor instructions sets
i * Intel® Software Development Emulator added AUGUST '08

Intel® Software Network

Communities

Explore how to CODE for parallelism
* Intel® Concurrent Collections for C/C++ added mid-2008
 Intel® C++ Parallelism Exploration Compiler, Prototype
Edition
« » w7 cIntel® Cluster OpenMP* for Intel® Compilers
I mmmmmm © Intel® C++ STM Compiler, Prototype Edition 2.0

Yl

]

#% New analysis tools
| - Intel® Platform Modeling with Machine Learning RECENT +
« Intel® Performance Tuning Utility 3.1 MOST POPULAR
« Intel® Integrated Debugger for Java*/INI Environments

New libraries

« Intel® Adaptive Spike-Based Solver RECENT ADD

» Intel® Summary Statistics Library

» Intel® Decimal Floating-Point Math Library RECENT ADD

» Intel® Location Technologies Software Development Kit 1.0

New web technologies
(.ntel Copyright © 2008, Intc * Intel® Mash Maker: Mashups for the Masses GRADUATE

elE ompiler, Prototype Editio O elE S50 are Netwo 050 erne plore L1 ||

Tools Help ﬁ.

E @ {:j pSEarch ‘-E?"\?Favu:urites @ Bv .,1_; Yl;_aza |.U_.i7| - |_J ﬁ .‘3

File Edit

@ Back - '\.._:I

View Fawvorites

Address |@ http: f{software.intel. comfen-us/farticles fintel-c-stm-compiler-prototype-edition-20 V| Go Links °
#
work Play Support AboutIntel Change Location ||_ SASLED. |
Intel® Software Network
Connect with developers and Intel engineers Communities Downloads Tools Forums/Blogs Resources Software Support

Home -= Articles English | 9937 | Pycokumi

Intel® C++ STM Compiler, Prototype Edition 2.0 Submit New Articlex .
b EEE D L
Last Modified On ¢ Nowvember 19, 2007 9:34 AM PST
Rate .
Login
What If Home | Product Overview | Technical Requirements | FAQ | Primary Technology Contacts | Discussion Do Login ID: |:|
Forum | 5103 NoWIR sswor:
assword:

Remember Me? [

Product Overview Flash Demo

Hews Trarrias ol Py Ioricl

Farallel programming has traditionally been considered using locks to
zynchronize concurrent access to shared data. Lock-based synchronization,

howewver, has known pitfalls: using locks for fine-grain synchronization and
composing code that already uses locks are both difficult and prone to deadlock.
Transactional memory is proposed to simplify parallel programming by
supporting "atomic” and "izolated” execution of user-zpecified tasks. It provides
an alternate concurrency control mechanism that aveoids these pitfalls and sases

H f:] ﬁg phared Meamory

Forgot Login ID7?
Forgot Password?
Mew Begistration?

parallel programming. The Transactional Memory C++ language constructs that Search
are included open the door for users to exercise the new language constructs for
parallel programming, understand the transaction memory programming model,
and provide feedback on the usefulness of these extensions with Intel® C++
STM Compiler Prototype Edition. This posting includes the Intel® C++ STM T L i —— Advanced Search
Compiler Prototype Edition 2.0 and runtime likraries for Intel transactional R s e S A i
memory language construct extensions. Sl cormpien,) rev—: e
Author

1

@ javascript: flashwin;

[E] 10 Micosoft... - @& P:itaks\sea0s

Eam

Copyright © 2008, Intel Corporation

icrosoft ...

@ Trusted sites

Transactional Memory

Programmer System
manually ensures no race automatically ensures no race

(II'ItElI Copyright © 2008, Intel Corporation >

(a

A C++ Example

ints = 0;
class B
{ public:
__declspec(tm_callable)
virtual void inc()
Ss=s+1;
};}
class C : public B
{ public:
__declspec(tm_callable)
void inc()
Ss=s+1;

bs

Copyright © 2008, Intel Corporation

using the prototype

int main()
{ B *x, *y;

#pragma omp parallel sections
num_threads(2)
{
__tm_atomic {
X = new B();
x->inc();

¥

#pragma omp section
___tm_atomic {
y = new C();
y->inc();
b
b
b

37

Summary

* Programming is not "EASY"
— Neither is parallel programming

e There isn't one magic solution for Parallel
Programming 2.0

— Methodology: design, code, debug, tune

* The right tools such as the Intel products will help
make parallel programming EASIER.

‘ lntel,: Copyright © 2008, Intel Corporation

38

