
Using Reverse Semantic Traceability for Quality Control in Agile MSF-

based Projects

Konstantin Zhereb1, Vladimir Pavlov1, Anatoliy Doroshenko
1
, and Victor Sergienko

1

1International Software & Productivity Engineering Institute (INTSPEI)

{ zhereb, vlpavlov, doroshenko, sergienko}@intspei.com

Abstract

Reverse Semantic Traceability (RST) is a quality control method that allows minimizing inconsistencies
between inputs and outputs of every step in a software development process. For each step, before proceeding
to the subsequent ones, the current inputs are restored (reverse engineered) from the current outputs, and
compared to the original versions of inputs. If they are semantically different, then some corrective actions are
required to eliminate the inconsistency.

Previously RST was successfully used within projects that employed “formal” methodologies. This paper
describes experience of integrating RST into one of agile methodologies (Microsoft Solutions Framework for
Agile Software Development). The paper also provides a case-study of using the new combined methodology in
a small software development project.

Keywords: INTSPEI P-Modeling Framework, agile processes, Microsoft Solutions Framework (MSF), quality
control.

1. Introduction

Most currently used Software Development Life

Cycles (SDLCs) have the same drawbacks in

common. For large projects the most important

decisions and the most expensive mistakes are done

at the very beginning of the project, and then as the

development moves forward the cost of mistakes

goes down. This idea is illustrated on Fig. 1 [1]. At

the same time, the amount of quality control

activities is minimal at the beginning of the project

but is increasing as development progresses. Hence,

important analysis and design mistakes are usually

discovered on the latest phases of the development

process which leads to expensive rework.

There are two ways to deal with this problem: to

shorten development iterations and make them more

frequent, and to incorporate additional quality

control techniques to identify analysis and design

mistakes when they are introduced – not on the latest

phases of development. The first approach became

extremely popular recently as agile methods spread

over the world [2]. Short iterations allow frequent

customer feedback; also automated unit testing can

be applied early in the project. However, for large

projects the approach of shortening iterations does

not work well; there is a need for quality control

methods that utilize the second approach. Such

methods include various forms of software reviews

[9], as well as recently developed Reverse Semantic

Traceability – a part of INTSPEI P-Modeling

Framework [3].

Requirements

Requirements

Architecture

Architecture Detailed Design
Detailed Design

Construction

Construction

Maintenance

Phase That a Defect is CorrectedPhase That a Defect is Created

Cost to Correct

Figure 1. Software defects costs

INTSPEI P-Modeling Framework was first

applied in large projects and got successful results

described in [5]. Initial feedback from early adopters

of INTSPEI P-Modeling Framework suggested that it

could be used in agile projects as well. Therefore, we

have created an integrated process that combined

P-Modeling Framework and one of agile processes –

Microsoft Solutions Framework for Agile Software

Development (MSF Agile) [16]. Paper [6] describes

our experience of integrating P-Modeling Framework

with MSF Agile, and also provides technical

description of the resulted integrated process. In this

paper, we focus on methodological aspects of

applying P-Modeling Framework in agile processes

(exemplified by MSF Agile), rather than on technical

details. This paper also contains a case study that

demonstrates how to use Reverse Semantic

Traceability together with agile methodologies.

The rest of the article is organized as follows. In

Section 2, we present an overview of Reverse

Semantic Traceability and compare it with other

similar approaches. Section 3 outlines the integration

of P-Modeling Framework with an agile process –

MSF Agile. Section 4 describes a small case study of

using RST (and P-Modeling) in agile project. Finally,

Section 5 summarizes conclusions and presents the

directions for future research.

2. Reverse Semantic Traceability

This section provides brief description of a new

quality control technique, Reverse Semantic

Traceability, which is the most important part of the

INTSPEI P-Modeling Framework. Also we compare

RST with other similar approaches found in

literature.

2.1. The idea of the method

Reverse Semantic Traceability (RST) is a quality

control method that allows testing consistency

between inputs and outputs of every process step. For

each step, before proceeding to the subsequent ones,

the current inputs are restored (reverse engineered)

from the current outputs, and compared to the

original versions of inputs. If they are semantically

different, then the step has to be repeated more

precisely to eliminate this ambiguous understanding.

The key word in the name of this method is

“Semantic” because the original and restored

versions of an artifact are to be compared

semantically, with a focus on the “meaning” of this

artifact, not on particular notions used in it. Hence,

the reverse engineering and the evaluation of the

semantic difference must be performed by human.

Based on this evaluation, a quantitative value can be

assigned to each traceability relation between inputs

and outputs.

The previous research related to Reverse

Semantic Traceability focused on core ideas behind

RST [3], as well as its application in education [4]

and in large industrial projects [5]. In particular,

paper [5] demonstrated that Reverse Semantic

Traceability method could be used successfully for

large projects that utilize formalized methods such as

RUP or MSF CMMI.

INTSPEI P-Modeling Framework is not discussed

here in detail. More detailed discussion of this

methodology can be found in [3-8].

2.2. Similar techniques

RST improves existing quality control procedures,

such as software inspections [9], by utilizing

elements of reverse engineering and traceability

management approaches. In this section we compare

RST with similar techniques.

RST uses the procedure similar to software

reviews and inspections [9-11], when reverse

engineers read the “text” of the translated artifact to

restore the original artifact. Dunsmore et al. propose

the similar technique for reading object-oriented

code [10]. However, the distinction of RST is that the

reviewer is not allowed to be familiar with the input

artifacts – he should restore them from the outputs.

RST also adds one more step to the review process,

namely comparing restored and original artifact. It

helps to ensure that the output artifacts do not

conflict previously created input artifacts (e.g.

architecture is created according to the requirements

or bug fix was performed according to bug

description). This additional step also increases the

efficiency of the review process, as reviewer (reverse

engineer) has to examine the translated artifact more

precisely in order to restore the original artifact.

There are also many solutions for capturing

traceability relations between project artifacts on

different stages of SDLC [12-15]. Traceability is

used to establish links between requirements and

source code fragments implementing these

requirements, as well as to estimate effect of changes

in requirements on source code [12]. Research in

this area concentrates on metamodels for traceability

process [13], usage scenarios of traceability [13, 14],

automatic creation of traceability links [15].

However, most traceability solutions provide

facilities only for establishing links between artifacts

and not for estimating quality of these links. RST

approach enhances traceability solutions by assigning

numeric quality values to intermediate traceability

links (e.g., from requirements to design).

3. Integration with MSF Agile

INTSPEI P-Modeling Framework is an add-on

to existing methodologies, not a standalone process.

Currently, INTSPEI P-Modeling Framework

integrates both with agile and formal processes. The

former include Microsoft Solutions Framework for

Agile Software Development [16] and Open Unified

Process [17], while the latter include IBM Rational

Unified Process [18] and Microsoft Solutions

Framework for CMMI Process Improvement [16]. In

this paper we focus on integration with agile

processes, using the P-Modeling Framework

Integrated with MSF Agile as an example. This paper

presents only an overview of P-Modeling Framework

Integrated with MSF Agile; more detailed technical

description is provided in [6].

3.1. Elements of P-Modeling in MSF Agile

The core elements of the INTSPEI P-Modeling

Framework are the Reverse Semantic Traceability

and the Speechless Modeling techniques. Both of

them were incorporated into the MSF Agile lifecycle.

The P-Modeling Framework Integrated with MSF

Agile contains detailed descriptions of these

techniques and step-by-step instructions for team

members. It also describes how Reverse Semantic

Traceability and Speechless Modeling work together

with other MSF Agile activities.

P-Modeling Framework integrated with MSF

Agile suggests performing the following RST

activities:

• Perform RST for Scenario;

• Perform RST for Solution Architecture;

• Perform RST for Development Task

Implementation;

• Perform RST for Database Task

Implementation;

• Perform RST for Bug Fix;

• Perform RST for Scenario Test Cases;

• Perform RST for Quality of Service

Requirement Test Cases.

The RST activities are connected to MSF Agile

process. When one of the important work products is

created according to MSF Agile guidance, P-

Modeling Framework recommends performing an

RST session to verify that no information was lost or

misinterpreted during its creation. The typical RST

session consists of the following steps: Preparation,

Reverse Engineering Step, Expert Assessment and

Making the Decision.

The participants of an RST session assume a set

of RST-specific roles, which are active only during a

single RST session. P-Modeling Framework adds

three new roles to the set of MSF Agile roles:

Artifact Owner, Reverse Engineer and Expert, and

also uses one of the MSF roles, Project Manager.

The RST roles are typically combined with the MSF

roles. For example, the person performing the MSF

Agile role “Architect” will also perform the RST role

“Artifact Owner” during the RST session for the

solution architecture. The same person can fulfill

different roles in different RST sessions; furthermore,

this practice is encouraged in order to increase the

understanding of the P-Modeling Framework.

The results of the RST session are captured in

specific work products – RST Session Report and

RST Expert Assessment. The RST Session Report

contains all information about the session, including

the date, participants, original and restored artifacts

and the final decision. The RST Expert Assessment

form captures the result of experts’ meeting – their

assessment of quality value and their comments.

These work products are used to communicate the

results of the RST Session to the team.

Based on the results of the RST session, the

Project Manager makes one of the following

decisions:

1. The quality of the artifacts is sufficient and the

development may proceed to the next phase.

2. Rework of output artifacts is needed in order to

eliminate defects and information loss.

3. Corrections to both input and output artifacts are

needed in order to eliminate misunderstandings

4. One more RST session after rework of the

artifacts is required.

While the Reverse Semantic Traceability can be

applied to all work products, this would create a

significant overhead. Therefore, P-Modeling

Framework recommends prioritizing the work

products and performing RST only for the most

significant of them. The prioritizing is performed be

the Project Manager during iteration planning (at the

beginning of each iteration). The artifacts are

prioritized according to multiple criteria, including

their contribution to the quality of the final product,

severity of possible defects and availability of other

quality control methods. The results of this activity

are recorded in the RST Rank Table.

4. A case study

In this section we describe a small case study

performed to investigate the usage of P-Modeling

Framework in agile project.

4.1. Project description

We applied P-Modeling Framework integrated

with MSF Agile in a pilot project. The project

consisted in creating an application for simulation of

Conway’s Life game [19]. The project lasted for 2

months and included 3 part-time student developers.

During the project, the team followed the MSF

Agile process, as described in MSF Process

Guidance version 4.1 [16]. The project consisted of

four 2-week iterations. The first iteration

corresponded to MSF Envision and Plan tracks – the

team created vision document, collected

requirements and outlined initial design. Two

intermediate iterations were spent on actual

development and testing of the product (Build track).

The last iteration combined activities from Build and

Stabilize tracks.

The team started using P-Modeling Framework

from the beginning of the project. On the first days of

the first iteration, the planning of RST activities was

performed. Each RST session requires at least one

external participant who is not familiar with the

project details, and the Project Manager should look

for such candidates in advance. Therefore, the

Project Manager should understand how many RST

sessions are expected on each iteration and for what

artifacts.

In our project, the team noticed that RST

activities would differ significantly in the first

iteration and in all subsequent iterations. During the

first iteration, the most important artifacts are vision

document and high-level design. Performing Reverse

Semantic Traceability sessions to verify these

artifacts constitutes a valuable addition to MSF

process. Their quality could not be efficiently

verified by other means – at least until the

implementation is created in the next iterations. In

contrast, for all subsequent iterations the focus of

RST activities shifts to verifying multiple smaller

artifacts: implementations of development tasks, bug

fixes and test cases. In these iterations, Reverse

Semantic Traceability complements other quality

control methods, such as unit testing and functional

testing.

P-Modeling Framework integrated with MSF

Agile proposes to verify vision statement by restoring

it from scenarios (the process is described in

“Perform RST for Scenario” activity); the high-level

design is verified by restoring the requirements from

the design. When the team planned RST activities,

they decided that performing RST session for the

design will be more valuable. The vision for the

project was quite simple, and the team expected that

it should not contain any defects. The design, on the

other hand, could contain a number of defects,

because the student who created it had little

experience in design; also miscommunications were

possible, as requirements and design were created by

different team members. Also the team decided that

the importance of design was greater than that of

vision.

This paper concentrates on Reverse Semantic

Traceability activities that were performed in the first

iteration only.

4.2. RST session for Design

The most important of RST activities for the

project was RST session for high-level design. The

team created the design of the application in the first

iteration. During RST session, reverse engineers

were assigned to restore the requirements (in form of

scenarios) from the design. The reverse engineers

were not familiar with the project before the RST

session. When the requirements were restored, a team

of experts compared the restored and original

versions of the requirements and expressed their

comments.

The initial requirements were split into functional

and non-functional (called scenarios and quality of

service requirements in MSF Agile). The

requirements were stored in Microsoft Team

Foundation Server. Fig. 2 shows the scenarios

identified by the Analyst. The main scenarios are:

editing configuration, running simulation for one or

more turns and saving or loading game configuration.

Additional lower-priority scenarios included moving

through simulation history, changing the size of the

displayed configuration and exporting configurations

as images. (The full text of the requirements is not

included because of space limits.)

Figure 2. Original scenarios

Figure 3. Core classes

Figure 4. GUI classes

Figure 5. “Hashlife” algorithm classes

Based on the requirements found, the Architect

developed the application design using Microsoft

Visual Studio. The core classes are outlined on Fig.

3. The IConfiguration interface represents single

colony configuration; ConfigurationController

calculates next game step, stores the history and

saves or loads a game state. The classes responsible

for graphical user interface (ConfigurationDisplay

and LifePlayer) are shown on Fig. 4. Fig. 5 presents

classes related to “Hashlife” algorithm [19] that

performs simulation.

When the diagrams representing design were

ready, an RST session was performed to verify that

the architecture meets the requirements. Reverse

engineers were provided with the design and were

asked to restore the requirements. The reverse

engineers had no prior knowledge of any project-

related activities; however, they did know the rules of

the Life game. The duration of the RST session was

restricted to 1 hour. The reverse engineers restored

the following requirements (Fig. 6).

After the reverse engineers have restored the

requirements, experts compared them with the

original requirements. The process took about an

hour: first 40 minutes were spent on reading

documents by individual experts, followed by 20-

minute discussion. The experts produced the

following comments (Fig. 7).

Based on the results of the RST session, the team

made the following rework decisions:

• Modify requirements – add missing scenario

(Choose language)

• Clear up domain dictionary – use “Colony”

instead of ambiguous “Configuration”

• Put more work into “Edit configuration”

functionality– notable design changes;

• More detailed GUI classes design – minor

design changes;

Figure 6. Restored requirements

Figure 7. Expert comments

1. Requirement not restored: Edit configuration;

2. Requirement not restored: Save/load configuration;

3. Requirement not restored: Rewind history;

4. Requirement not restored: Export Configuration(s) as animated image;

5. Extra requirement restored: Change language

6. Extra requirement restored: Clear history

7. User interface provides no possibility to change language

8. Note: What is “configuration”? Looks like “program configuration” and can be easily confused

with it. I suggest naming it like “colony” or “board”.

Scenario 1: User can control the game of “Life” by performing the following actions:

• Start the game using “Play” command

• Stop the game using “Stop” command

• Move to the given turn using “Go to Turn” command

Additional Requirements

• The system simulates each game step with the speed specified by “PlaySpeed:int” parameter

• The systems stores the history of game steps

• Hashlife implementation is used (http://en.wikipedia.org/wiki/Hashlife). The fast storage of

simulation history is implied.

• There is an option to clear the game history.

Scenario 2: The player can change game display configuration. The player can set the display

language.

Additional Requirements

• Display settings: language, zoom

Notes:

• User interface provides no possibility to change zoom level and simulation speed

• There is a mistake in Rectangle class: it should contain height, width, left, top, instead of height,

width, left, right.

Figure 8. Changes in design after RST: a new diagram

Fig. 8 shows the new class diagram that was

created as a part of improvements suggested by the

RST session. It contains the classes related to the

scenario that was initially omitted from design and

hence not restored by reverse engineers (“Edit

configuration”). Note that other diagrams have also

changed; we don’t include updated versions because

of space limit.

4.3. Analysis

The RST session performed as a part of MSF

Agile project demonstrated that Reverse Semantic

Traceability can be a valuable quality control

technique in a project based on agile methodologies.

The most important usage scenario for RST is quality

control at the beginning of the project, in the first

iterations. Even in agile processes, there is a period

of time at the project start when no production code

is developed. The team focuses on establishing

project vision and important architectural decisions.

The typical quality control methods of agile

processes – automated unit tests and customer

feedback – are of limited value in the first iteration.

However, the Reverse Semantic Traceability can

verify that the first crucial artifacts are correct (or at

least consistent).

The team members were excited to discover the

method of discovering defects in project artifacts

without actually testing the software (or even writing

the code). The only other method they knew that

could produce the comparable results was software

review process. However, the feedback from the

team shows that the RST method is more effective.

One of the reverse engineers said, “I always thought

that design review is a boring process. But the RST

session was anything but boring. It was more like

solving an exciting puzzle – trying to understand the

reasons behind the design decisions … I believe that

RST is more effective than traditional design review.

It was the task to restore the unknown requirements

that forced us to understand the design better and so

find some subtle defects that would evade our

attention during design review.”

The RST session proved quite effective in terms

of the resources spent and the outcome. The whole

RST session required about 7 man-hours: 1 for

preparations, 1 hour for two reverse engineers and 1

hour for 4 experts (most of this time was spent by

people not directly involved in the project – reverse

engineers and experts). However, the outcome of the

session was quite significant. Both the requirements

and the design have been improved, and some

defects were eliminated that would require significant

rework were they discovered during actual coding.

For example, the “Edit colony (configuration)”

scenario that was omitted from design required

significant changes in user interface, as well as in

core classes. When the improvements suggested by

RST were made, the team noticed that one of

important assumptions about core classes was wrong.

Namely, the QTreePiece class (see Fig. 5) was

assumed to be immutable, because of requirements of

the “Hashlife” algorithm. However, the “Edit colony”

scenario required that the colonies (implemented by

QTreePiece class) could be modified. As a result, the

team decided to add one more class representing a

colony (ArrayColony) that was mutable. This change

in design required about 2 hours. However, the

potential cost of rework would be much greater had

the wrong design been implemented in code. The

team estimated that this defect (missing edit

capability) would have been certainly found by the

team; but its correction would require significant

changes in user interface, core classes and unit tests.

The rework would stop the progress of the entire

team for a few working days.

The feedback from the case study participants

(both project team and RST participants) suggested

that Reverse Semantic Traceability effects were not

limited to improving the quality of the artifacts that

were used in RST session. The team members

learned that the project artifacts are not created just

because the process says to do so. The artifacts

created by one team member will be used by another

one, and the author should make the artifact

understandable to its subsequent user. The person

who created the design said, “I tried to create the

design that would be correct and elegant, but I

actually forget that it should be understandable. The

reverse engineers said they had some problems

understanding my diagrams; but if we did not

perform RST, the same problems would hinder the

progress of developers”. Therefore, RST session

ensured that artifacts that were created could be

actually used in project. This corresponds to the agile

principles stating that the artifacts that are not useful

to the project should be avoided. RST helped to

make project artifacts, including requirements and

design, actually used in project, not just ”write-only”

bureaucratic burden.

5. Conclusions

We have described an application of Reverse

Semantic Traceability technique for quality control in

agile project and illustrated it by a case study. The

case study has demonstrated that Reverse Semantic

Traceability can be used in agile projects, and it

provides a valuable addition to agile quality control

methods. According to our observations, the usage of

RST is the most important during the first iteration of

agile project.

The future directions of research include

applying P-Modeling Framework in industry projects

based on agile process. Also we want to conduct

more experiments applying Reverse Semantic

Traceability to different kinds of artifacts in order to

improve the RST process and create more detailed

instructions on usage of P-Modeling in both agile and

more formal processes.

6. References

[1] Steve McConnell: Upstream Decisions, Downstream

Costs. Windows Tech Journal (1997)

http://www.stevemcconnell.com/articles/art08.htm

[2] Manifesto for Agile Software Development

http://www.agilemanifesto.org

[3] Vladimir L Pavlov, Stanislav Busygin, Nikita Boyko,

Alexander Babich, “Is There Still a Room For

Programmers' Productivity Improvement?”,

Proceedings of the 5th East-West Design and Test

Symposium (EWDTS'07), 2007, pp. 146-151

[4] Pavlov, Vladimir; Boyko, Nikita; Babich, Alexander;

Kuchaiev, Olexii; Busygin, Stanislav., Applying

Pantomime and Reverse Engineering Techniques in

Software Engineering Education, Proc. 37th

ASEE/IEEE Frontiers in Education Conference, Oct. 10

– 13, 2007, Milwaukee, WI. IEEE, 2007, pp. TIE1-

TIE5.

[5] Pavlov, Vladimir; Boyko, Nikita; Babich, Alexander;

“First Experience of Using INTSPEI P Modeling

Framework in Software Development Projects”,

Problems in Programming, Issue 2, May 2007, pp. 68-

75.

[6] V. Pavlov, A. Doroshenko, T. Taganskaya, K. Zhereb,

N Boyko, An Experience of Integrating INTSPEI P-

Modeling Framework with Microsoft Solutions

Framework for Agile Software Development, 2007

(accepted for publication in Proc. IASTED Int. Conf.

Software Engineering, 2008).

[7] Pavlov, Vladimir; Yatsenko, Anton “’The Babel

Experiment’: An Advanced Pantomime-based Training

in OOA&OOD with UML”, 36th ‘ACM Technical

Symposium on Computer Science Education’, February

25, 2005.

[8] INTSPEI P-Modeling Framework Whitepaper,

INTSPEI, http://www.intspei.com

[9] Fagan, M.E., Design and Code Inspections to Reduce

Errors in Program Development. IBM Syst. J., Vol. 15,

No. 3, 1976, pp. 181-211.

[10] A. Dunsmore, M. Roper, and M. Wood,

“Systematic Object-Oriented Inspection—An Empirical

Study,” Proc. 23rd Int’l Conf. Software Eng. (ICSE

’01), pp. 135-144, May 2001.

[11] Wood, M., Roper, M., Brooks, A., and Miller, J.

Comparing and combining software defect detection

techniques: a replicated empirical study. SIGSOFT

Softw. Eng. Notes 22, 6 (Nov. 1997), pp. 262-277.

[12] N. Aizenbud-Reshef, B. T. Nolan, J. Rubin, Y.

Shaham-Gafni, Model traceability. IBM SYSTEMS

JOURNAL. Vol. 45, No. 3, 2006.

[13] B. Ramesh and M. Jarke, ‘‘Toward Reference

Models for Requirements Traceability,’’ IEEE

Transactions on Software Engineering 27, No. 1, 58–93

(January 2001).

[14] O. C. Z. Gotel and A. C. W. Finkelstein, ‘‘An

Analysis of the Requirements Traceability Problem,’’

Proceedings of the First International Conference on

Requirements Engineering, Utrecht, The Netherlands

(1994), pp. 94–101.

[15] G. Antoniol, G. Canfora, G. Casazza, A. D.

Lucia, and E. Merio. Recovering traceability links

between code and documentation. IEEE Transactions

on Software Engineering, 28(10), October 2002.

[16] Microsoft Solutions Framework

http://www.microsoft.com/msf

[17] Kroll, Per; MacIsaac, Bruce; Agility and

Discipline Made Easy - Practices from OpenUP and

RUP, Addison-Wesley Professional, 2006, 448 p.

[18] Kruchten, Philip: The Rational Unified Process:

An Introduction. Addison-Wesley, 2003.

[19] Conway’s Life Game,

http://en.wikipedia.org/wiki/Conway's_Game_of_Life

