

CORRELATION BETWEEN CODING STANDARDS

COMPLIANCE AND SOFTWARE QUALITY

Author: Wojciech Basalaj

Co-Author: Frank van den Beuken

Programming Research, 9-11 Queens Road, Hersham, Surrey KT12 5LU, UK

Frank_van_den_Beuken@programmingresearch.com

ABSTRACT

Software Quality has different meaning to different people. The ISO 9126 standard was

developed to introduce clarity and establish a framework for quality to be measured. This

paper aims to explore how Internal Quality characteristics of a software system (source

code) can be measured effectively. Instead of relying on traditional software metrics, which

are shown to be a poor predictor of underlying software quality, we advocate measuring

compliance to a coding standard. We show qualitative and quantitative evidence of how

adoption of a coding standard helps organizations in improving the quality of their C/C++

software.

Keywords: Software Quality Modelling, Coding Standards, Software Metrics, Statistical

Analysis

 - 2 -

1. ISO 9126 QUALITY MODEL

The ISO 9126-1 standard [4] has been

introduced to formalise the notion of

Quality of a Software System. 3 distinct

aspects are considered:

• Internal Quality measured for a non-

executable form of the Software

System, e.g. its source code.

• External Quality, which pertains to

the run-time behaviour of the

system, as experienced during

dynamic test.

• Quality in use, which addresses the

degree to which user goals and

requirements are fulfilled.

Internal and External Quality can be

further categorised into 6 separate

characteristics:

• Functionality

• Reliability

• Usability

• Efficiency

• Maintainability

• Portability

Each of these 6 characteristics can be

further subdivided, and there are 27 sub-

characteristics in total.

Quality in Use has been divided into 4

characteristics:

• Effectiveness

• Productivity

• Safety

• Satisfaction

ISO 9126-1 advocates measuring each of

these characteristics, but does not specify

how. Examples of suitable metrics are

given in Technical Reports: 9126-2 [5],

9126-3 [6], 9126-4 [7]. The standard

stipulates that with suitable choices of

metrics Internal Quality should predict,

or in other words correlate with External

Quality, which in turn should predict

Quality in Use.

In this study we will be focusing on the

Satisfaction Quality in Use characteristic.

We will attempt to demonstrate that this

characteristic can indeed be predicted by

measuring Internal Quality of a software

system, see Section 4.1. We will also be

examining empirical evidence of a

correlation between Internal and External

Quality measures, see Section 3.

Prior to conducting such a study we

needed to settle on suitable metrics for

Internal Quality. ISO 9126-3 [6] is a

Technical Report that proposes such

metrics. The vast majority of them are of

the following form: percentage of items

(functions, variables, etc.) meeting a

specific requirement. There are a number

of problems with such a definition of

metrics. Their calculation cannot be easily

automated, and their value needs to be

determined by comparing implementation

and design documents with specification.

These metrics indicate how much work on

the project has been completed, rather

than the underlying quality of the

implementation. Such metrics represent

good project management practice for

green-field projects, and cannot be applied

easily when part of the system is re-

engineered. Lastly, quality or lack thereof

is not seen as an attribute of source code,

as none of the proposed metrics are based

on direct measurements on source code.

This is against the guidance of ISO 9126-1

[4] page 15.

Prior to ISO 9126 there has been a vast

amount of research devoted to software

metrics [2]. These traditional metrics,

such as Cyclomatic Complexity or

Estimated Static Path Count, are

concerned with the structure of a

 - 3 -

function, vocabulary of a source file, etc.

Therefore, they may yield the same values

for drastically different versions or stages

of a Software Product, e.g. Cyclomatic

Complexity for pseudo code stage may be

the same as for the final implementation.

Moreover, there is no well-defined and

substantiated mapping for these metrics

to ISO 9126 characteristics. We examine

possible correlations of such software

metrics with Quality in Use metrics in

Section 4.2.

2. CODING STANDARDS

Nowadays, increasingly more emphasis is

given to following best practice, and

defining and enforcing coding standards,

especially for high cost of failure software

projects. Compliance to a coding standard

is often treated as a pass/fail test.

However, a different approach is possible,

where the level of compliance is

measured, either as the absolute number

of violations for a particular source file,

module or component, or normalised by

the size of the entity, e.g. number of lines

of code. This would allow correlating

compliance with measurements of other

aspects of the product, e.g. run time

behaviour or user experience.

The most popular coding standard in the

public domain for the C language is

MISRA-C [12][13]. It constitutes a subset

of the C language that restricts usage of

poorly defined or unsafe constructs. Less

emphasis is given to presentational

aspects: naming conventions and layout.

Until recently, no such definitive coding

standard was available for the C++

language. The first and probably most

complete is High Integrity C++ [14]. More

recently, the Joint Strike Fighter Air

Vehicle C++ Coding Standards [10] were

released, demonstrating the growing

industrial acceptance of using coding

standards. Other C++ guidelines tend to

focus on specific programming aspects

[3][11][16][17].

The rules of these coding standards

represent common pitfalls with

developing in the corresponding

programming language, and have been

derived either from experience or on

theoretical grounds, by examining the

language specification [8][9]. Therefore,

counting the number of violations of such

rules in a Software Product appears well

founded, and intuitively corresponds to a

measure of its Internal Quality. This

proposition is rigorously evaluated in

Section 4.1.

3. QUALITATIVE RESULTS

We wanted to verify the proposal for

measuring Internal Quality of a software

product with real-world examples. We

have engaged with some software

companies, to find out what tangible

benefits enforcement of a coding standard

has given them. Two of them were able to

offer broad qualitative statements, and

these are documented in Section 3.1 and

3.2. However, they could not provide, in

time for publication of this paper, any

numerical data that would allow us to

compare, for example, faults found in the

field and compliance to a coding standard

of specific software modules. However,

another company had such data available,

and we worked together to establish

whether there were any correlations, see

Section 4 for details.

3.1 Company A

They have been using MISRA-C:1998 [12]

ever since historical process data have

been collected. Some extra rules are

enforced to do with naming conventions

 - 4 -

and limiting undefined behaviour.

Typically, approximately 90% of the rules

of this combined coding standard are

adhered to for a project.

For a number of specific projects porting

from one platform to another was

required, and this was achieved with

hardly any re-coding. This result was

attributed to restricting undefined and

implementation defined behaviour in

their coding standard.

In their development process, unit testing

occurs on a parallel track to coding,

review and bench testing. By examining

process data it was found that all the

faults found in unit testing were also

identified in the development track

during code review (of which coding

standard compliance is a part) or bench

testing stages. Therefore, unit testing,

despite being part of industry best

practice, did not yield any new issues,

apart from fulfilling its secondary role of

verifying the specification. Subsequently,

for some projects unit testing has been

limited or dropped altogether in

preference to proceeding straight to

integration/system test.

3.2 Company B

The AUTOSAR[1] subset of MISRA-

C:1998 [12] is used, as well as other

proprietary coding standards, depending

on the project, and this is mandated

contractually.

The software projects are large, typically

around 500KLOC. By defining a software

platform, and making it conform to

stricter rules on limiting implementation

defined behaviour, they were able to

migrate from one compiler and micro

controller combination to another in a

matter of weeks. This result is similar to

that of Company A, see section 3.1.

Reuse is very common across projects, and

coding standard rules on layout and

naming conventions were found to be

helpful in this regard.

4. QUANTITATIVE RESULTS

Company C has an ongoing programme

for improving customer satisfaction. To

this end they are collecting software fault

reports from the field, and tracking them

on a regular basis. The incidence of

critical software faults tends to vary

across their products, and the intention is

to identify measurements on source code,

i.e. Internal Quality metrics, that would

correlate with these fault data, i.e.

Quality in Use: Satisfaction metric. Once

such source code factors are identified, it

will be possible to re-engineer the

software to minimise their value; and

thus, likely to minimise the incidence of

critical faults in released software.

Together with Company C we have

collected code metrics for a number of

their software products, and correlated

them with the corresponding critical fault

data. These code metrics fall into two

categories:

- incidence of coding standard

violations,

- traditional software metrics [2].

The results are documented in Sections

4.1 and 4.2 respectively.

4.1 Message Correlation

As a pilot study we focused on 18 software

products written in C++, and owned by a

single business unit. Critical fault data

for each of the products was available,

covering a period of 12 months. In order

not to disadvantage large projects, we

 - 5 -

normalised these measurements of

Quality in Use: Satisfaction by the size of

the corresponding code base, i.e. amount

of KLOC.

Rather than narrowing the study to some

specific coding standard or guidelines (see

Section 2), we decided to include as many

coding rules as possible, in our search for

the ones that will correlate with the fault

data. QA C++, static analyser for C++

from Programming Research, includes

nearly 900 rules ranging from ISO

Compliance and Undefined Behaviour [9],

Best Practice [3][11][14][16][17], to code

layout conventions. This includes rules

pertaining to individual source files as

well as issues occurring across files, see

Table 1 for examples.

confid
ence

msg# QA C++ message text

99.5% 1512 '%1s' has external linkage and
is declared in more than one
file.

99% 1508 The typedef '%1s' is declared in
more than one file.

99% 2085 For loop declaration of '%1s' is
hiding existing declaration.

99% 4239 Class type control loop variable
'%1s' modified in loop block.

97.5% 4217 Variable '%1s' is not accessed
after this initialisation before it
is next modified.

97.5% 4237 Class type control variable
'%1s' not declared here.

97.5% 3600 This 'int' literal is an octal
number.

95% 1505 The function '%1s' is only
referenced in one translation
unit.

95% 4243 Multiple class type loop control
variables found: '%1s'.

95% 4325 Variable '%1s' is not accessed
further.

95% 4004 Continue statement found.

95% 4208 Variable '%1s' is never used.

0% 2015 This function may be called
with default arguments.

Table 1. Message correlation with critical

fault data for a sample of QA C++ messages

For every software product we calculated

the occurrence of each QA C++ message,

and normalised the measurements by the

size of the product in KLOC. While we

could look for correlations between these

raw measurements for fault data and

message frequencies, this would make an

unnecessary assumption that both of

these populations of measurements were

distributed similarly.

Instead, we decided to use ranks of the

measurements only. If we were to order

the software products according to fault

data frequency, and for a given QA C++

message according to its frequency of

occurrence, similarity between these two

orderings would imply a positive

correlation between the message and fault

data. Considering that we are dealing

with a large number of products, from

statistical standpoint, it is not necessary

that these orderings are identical, for

there to be a significant correlation. Given

that the number of permutations of 18

entities: 18! = 18*17*…*2 =

6,402,373,705,728,000 is a staggeringly

large number, if a pair of orderings is

within the 5% group that are the most

similar, we can say with 95% confidence

that they are correlated. 95% confidence

interval is usually considered the

minimum level to achieve statistical

significance.

This leaves the question of how we are

going to judge similarity between two

given orderings of 18 products.

Spearman’s Rank Correlation Coefficient

Rs [15] is a non-parametric statistical test,

meaning that it works on the ranks of

measurements. It evaluates to 1.0 if the

orderings are exactly the same and -1.0 if

 - 6 -

they are exactly opposite, i.e. one is an

inversion of the other sequence. The

closer the value of Rs to 0 the less similar

both orderings are. In this study we are

only interested in positive correlations

between Quality in Use and Internal

Quality metrics: Rs>0. Given that we are

dealing with 18 products, in order to have

95% confidence of a positive correlation

between QA C++ message and fault data,

the value of Rs needs to be no smaller

than 0.401. Table 1 documents critical

values of Rs for higher confidence

intervals.

Confidence 95% 97.5% 99% 99.5% 99.9%

Critical
Value of Rs

0.401 0.472 0.550 0.600 0.692

Table 2. Critical Values of Spearman’s Rank

Correlation Coefficient Rs for 18 entities

The first 12 rows of Table 1 list QA C++

messages that are positively correlated

with critical fault data for the 18 software

products under consideration, with at

least 95% confidence. As an illustration

the last row contains the message that

has the value of Rs closest to 0. Figures 1-

5 on page - 9 - display the correlation

between the ranks of fault and message

frequencies for each software product as a

scatter plot, for a representative selection

of messages from Table 1. Dots (software

products) that lie on the y=x (diagonal)

line represent complete agreement

between the ranks. In Figure 1 dots are

much closer to the diagonal line than in

Figure 5, which visually confirms the

accuracy of the Spearman’s Rank

Correlation Coefficient. Figure 6

corresponds to the message with the

smallest value of Rs; for convenience both

positive y=x and negative y=19-x

correlation lines are drawn. As can be

seen dots are equally distant from both

diagonal lines.

This result can be interpreted as follows:

there is at least 95% likelihood that 12

QA C++ messages detailed in Table 1 are

positively correlated with critical faults in

18 software products under consideration.

This allows us to assume that by re-

engineering these products to reduce the

incidence of these messages, future

occurrence of critical faults may also be

reduced. As the organisation is interested

in improving customer satisfaction,

targeting these messages and monitoring

their frequency can supplement the

existing quality procedures.

It is worth pointing out that these 12

recommended messages are Best Practice

rules, rather than rules targeting

Undefined Behaviour, e.g. array access

out of bounds, or division by 0. Such rules

targeting potential ‘bugs’ are unlikely to

occur frequently in the code. If for 18

products most frequencies are 0 apart

from a few, the Spearman’s Rank

Correlation Coefficient will not exceed the

critical value, and so the corresponding

QA C++ message will not be flagged up as

correlated with critical fault data.

Therefore, it is necessary to supplement

rules/messages identified by this

statistical procedure with rules targeting

bugs, portability issues, and other

priorities identified for the software

products in question.

4.2 Metrics Correlation

Apart from looking for correlations

between critical faults and QA C++

messages, we were interested in

examining whether traditional software

metrics [2] could be of use. QA C++

calculates several function, file and class

 - 7 -

based metrics. We have recorded the

average, maximum and standard

deviation value of every metric for each of

the 18 software products. We then

calculated the values of Spearman’s Rank

Correlation Coefficient Rs between the

critical fault and these metric data across

the 18 products, which are collected in

Table 3. Critical value of Rs at 95%

confidence level is 0.401, and none of the

metrics meet that for either average

measurement, maximum or standard

deviation. Therefore, we could not

recommend any of these software metrics

to be included in the quality initiative.

5. SUMMARY

In this paper we have proposed using

coding standards compliance as a

measure of Internal Quality of a Software

System. The validity of this metric has

been confirmed on a group of real-world

software products, as for a number of

coding rules it was found to correlate with

a metric for Quality in Use: Satisfaction

characteristic. Also, compliance to a

coding standard has been found by two

separate organisations to positively

impact External Quality: Portability

characteristic of their software.

User satisfaction is a concrete concept,

and can be measured, e.g. by recording

faults in released software. Coding

standards compliance can also be easily

measured, and subsequently improved,

but does not directly map to improved

user experience. However, this could be

inferred, if a correlation between user

satisfaction and compliance to coding

rules is found, as is the case in this paper.

An interesting topic for a future study

would be to empirically demonstrate

validity of this cause and effect

hypothesis, by examining whether

incidence of faults will be reduced in

proportion to improvement in coding

standards compliance.

Metric avg max Std
dev

Class metrics

Coupling to other
classes

0.041 0.005 0.043

Deepest inheritance 0.083 0.166 0.100

Lack of cohesion within
class

-0.012 -0.061 -0.046

Number of methods
declared in class

-0.098 -0.020 -0.023

Number of immediate
children

0.055 0.025 0.061

Number of immediate
parents

0.055 0.034 0.055

Response for class -0.031 -0.057 -0.031

Weighted methods in
class

-0.017 -0.034 -0.069

Function metrics

Cyclomatic complexity 0.087 -0.141 -0.234

Number of GOTO's -0.153 -0.238 -0.154

Number of code lines -0.061 -0.068 -0.256

Deepest level of
nesting 0.103 0.234 0.087

Number of parameters 0.129 0.192 0.122

Estimated static
program paths

-0.362 n/a
§
 0.084

Number of function
calls

-0.102 -0.019 -0.239

Number of executable
lines

0.017 0.018 0.009

File metrics

Comment to code ratio 0.283 0.153 0.287

Number of distinct
operands

-0.220 -0.239 -0.304

Number of distinct
operators

-0.035 0.260 0.124

Total preprocessed
code lines

-0.074 0.142 -0.087

Total number of tokens
used

-0.144 0.040 -0.138

Total unpreprocessed
code lines

-0.073 0.077 -0.117

Total number of
variables

-0.187 -0.044 -0.261

§
 For technical reasons we were not able to accurately

calculate this value.

 - 8 -

Table 3. Metrics correlation with fault data

Critical value of Rs at 95% confidence level is

0.401

REFERENCES

[1] Automotive Open System

Architecture, www.autosar.org

[2] N.E. Fenton, S.L. Pfleeger. Software

Metrics: A Rigorous Approach. 2nd

edition. PWS, Boston, 1998

[3] M. Henricson, E. Nyquist, N. Erik.

Industrial Strength C++: Rules and

Regulations. Prentice Hall, 1997

[4] ISO/IEC 9126-1:2001. Software

engineering – Product quality – Part

1: Quality model.

[5] ISO/IEC TR 9126-2:2003. Software

engineering – Product quality – Part

2: External metrics.

[6] ISO/IEC TR 9126-3:2003. Software

engineering – Product quality – Part

3: Internal Metrics.

[7] ISO/IEC TR 9126-4:2004. Software

engineering – Product quality – Part

4: Quality in use metrics.

[8] ISO/IEC 9899:1990. Programming

languages – C.

[9] ISO/IEC 14882:2003. Programming

languages – C++.

[10] Lockheed Martin Corporation. JSF

AV C++ Coding Standards.

http://www.research.att.com/~bs/JSF-

AV-rules.pdf 2005

[11] S. Meyers. Effective C++: 55 Specific

Ways to Improve Your Programs and

Designs. 2nd edition. Addison Wesley,

Boston, 2005

[12] MIRA, MISRA-C:1998 - Guidelines

for the Use of the C Language in

Vehicle Based Software. www.misra-

c.com, 1998

[13] MIRA, MISRA-C:2004 - Guidelines

for the use of the C language in

critical systems. www.misra-c.com,

2004

[14] Programming Research. High

Integrity C++ Coding Standard

Manual. www.codingstandard.com,

2004

[15] S. Siegel. Nonparametric Statistics

for the Behavioral Sciences. McGraw-

Hill Book Company, Berkshire, 1956.

[16] H. Sutter, A. Alexandrescu. C++

Coding Standards: 101 Rules,

Guidelines, and Best Practices.

Addison Wesley, Boston, 2004

[17] H. Sutter. Exceptional C++. Addison

Wesley, 1999

 - 9 -

Figure 1. correlation for message 1512

Rs=0.649, confidence interval 99.5%

Figure 2. correlation for message 1508

Rs=0.568, confidence interval 99%

Figure 3. correlation for message 4217

Rs=0.533, confidence interval 97.5%

Figure 4. correlation for message 1505

Rs=0.466, confidence interval 95%

Figure 5. correlation for message 4208

Rs=0.403, confidence interval 95%

Figure 6. correlation for message 2015

Rs=0.001, i.e. no correlation

