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ABSTRACT 

Software Quality has different meaning to different people. The ISO 9126 standard was 

developed to introduce clarity and establish a framework for quality to be measured. This 

paper aims to explore how Internal Quality characteristics of a software system (source 

code) can be measured effectively. Instead of relying on traditional software metrics, which 

are shown to be a poor predictor of underlying software quality, we advocate measuring 

compliance to a coding standard. We show qualitative and quantitative evidence of how 

adoption of a coding standard helps organizations in improving the quality of their C/C++ 

software.  
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1. ISO 9126 QUALITY MODEL 

The ISO 9126-1 standard [4] has been 

introduced to formalise the notion of 

Quality of a Software System. 3 distinct 

aspects are considered: 

• Internal Quality measured for a non-

executable form of the Software 

System, e.g. its source code. 

• External Quality, which pertains to 

the run-time behaviour of the 

system, as experienced during 

dynamic test. 

• Quality in use, which addresses the 

degree to which user goals and 

requirements are fulfilled. 

Internal and External Quality can be 

further categorised into 6 separate 

characteristics: 

• Functionality 

• Reliability 

• Usability 

• Efficiency 

• Maintainability 

• Portability 

 

Each of these 6 characteristics can be 

further subdivided, and there are 27 sub-

characteristics in total. 

 

Quality in Use has been divided into 4 

characteristics: 

• Effectiveness 

• Productivity 

• Safety 

• Satisfaction 

 

ISO 9126-1 advocates measuring each of 

these characteristics, but does not specify 

how. Examples of suitable metrics are 

given in Technical Reports: 9126-2 [5], 

9126-3 [6], 9126-4 [7]. The standard 

stipulates that with suitable choices of 

metrics Internal Quality should predict, 

or in other words correlate with External 

Quality, which in turn should predict 

Quality in Use. 

 

In this study we will be focusing on the 

Satisfaction Quality in Use characteristic. 

We will attempt to demonstrate that this 

characteristic can indeed be predicted by 

measuring Internal Quality of a software 

system, see Section 4.1. We will also be 

examining empirical evidence of a 

correlation between Internal and External 

Quality measures, see Section 3. 

 

Prior to conducting such a study we 

needed to settle on suitable metrics for 

Internal Quality. ISO 9126-3 [6] is a 

Technical Report that proposes such 

metrics. The vast majority of them are of 

the following form: percentage of items 

(functions, variables, etc.) meeting a 

specific requirement. There are a number 

of problems with such a definition of 

metrics. Their calculation cannot be easily 

automated, and their value needs to be 

determined by comparing implementation 

and design documents with specification. 

These metrics indicate how much work on 

the project has been completed, rather 

than the underlying quality of the 

implementation. Such metrics represent 

good project management practice for 

green-field projects, and cannot be applied 

easily when part of the system is re-

engineered. Lastly, quality or lack thereof 

is not seen as an attribute of source code, 

as none of the proposed metrics are based 

on direct measurements on source code. 

This is against the guidance of ISO 9126-1 

[4] page 15. 

 

Prior to ISO 9126 there has been a vast 

amount of research devoted to software 

metrics [2]. These traditional metrics, 

such as Cyclomatic Complexity or 

Estimated Static Path Count, are 

concerned with the structure of a 
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function, vocabulary of a source file, etc. 

Therefore, they may yield the same values 

for drastically different versions or stages 

of a Software Product, e.g. Cyclomatic 

Complexity for pseudo code stage may be 

the same as for the final implementation. 

Moreover, there is no well-defined and 

substantiated mapping for these metrics 

to ISO 9126 characteristics. We examine 

possible correlations of such software 

metrics with Quality in Use metrics in 

Section 4.2. 

 

2. CODING STANDARDS 

Nowadays, increasingly more emphasis is 

given to following best practice, and 

defining and enforcing coding standards, 

especially for high cost of failure software 

projects. Compliance to a coding standard 

is often treated as a pass/fail test. 

However, a different approach is possible, 

where the level of compliance is 

measured, either as the absolute number 

of violations for a particular source file, 

module or component, or normalised by 

the size of the entity, e.g. number of lines 

of code. This would allow correlating 

compliance with measurements of other 

aspects of the product, e.g. run time 

behaviour or user experience. 

 

The most popular coding standard in the 

public domain for the C language is 

MISRA-C [12][13]. It constitutes a subset 

of the C language that restricts usage of 

poorly defined or unsafe constructs. Less 

emphasis is given to presentational 

aspects: naming conventions and layout. 

Until recently, no such definitive coding 

standard was available for the C++ 

language. The first and probably most 

complete is High Integrity C++ [14]. More 

recently, the Joint Strike Fighter Air 

Vehicle  C++ Coding Standards [10] were 

released, demonstrating the growing 

industrial acceptance of using coding 

standards.   Other C++ guidelines tend to 

focus on specific programming aspects 

[3][11][16][17]. 

The rules of these coding standards 

represent common pitfalls with 

developing in the corresponding 

programming language, and have been 

derived either from experience or on 

theoretical grounds, by examining the 

language specification [8][9]. Therefore, 

counting the number of violations of such 

rules in a Software Product appears well 

founded, and intuitively corresponds to a 

measure of its Internal Quality. This 

proposition is rigorously evaluated in 

Section 4.1. 

 

3. QUALITATIVE RESULTS 

We wanted to verify the proposal for 

measuring Internal Quality of a software 

product with real-world examples. We 

have engaged with some software 

companies, to find out what tangible 

benefits enforcement of a coding standard 

has given them. Two of them were able to 

offer broad qualitative statements, and 

these are documented in Section 3.1 and 

3.2. However, they could not provide, in 

time for publication of this paper, any 

numerical data that would allow us to 

compare, for example, faults found in the 

field and compliance to a coding standard 

of specific software modules. However, 

another company had such data available, 

and we worked together to establish 

whether there were any correlations, see 

Section 4 for details. 

 

3.1 Company A 

They have been using MISRA-C:1998 [12] 

ever since historical process data have 

been collected. Some extra rules are 

enforced to do with naming conventions 
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and limiting undefined behaviour. 

Typically, approximately 90% of the rules 

of this combined coding standard are 

adhered to for a project. 

For a number of specific projects porting 

from one platform to another was 

required, and this was achieved with 

hardly any re-coding. This result was 

attributed to restricting undefined and 

implementation defined behaviour in 

their coding standard. 

 

In their development process, unit testing 

occurs on a parallel track to coding, 

review and bench testing. By examining 

process data it was found that all the 

faults found in unit testing were also 

identified in the development track 

during code review (of which coding 

standard compliance is a part) or bench 

testing stages. Therefore, unit testing, 

despite being part of industry best 

practice, did not yield any new issues, 

apart from fulfilling its secondary role of 

verifying the specification. Subsequently, 

for some projects unit testing has been 

limited or dropped altogether in 

preference to proceeding straight to 

integration/system test. 

 

3.2 Company B 

The AUTOSAR[1] subset of MISRA-

C:1998 [12] is used, as well as other 

proprietary coding standards, depending 

on the project, and this is mandated 

contractually. 

The software projects are large, typically 

around 500KLOC. By defining a software 

platform, and making it conform to 

stricter rules on limiting implementation 

defined behaviour, they were able to 

migrate from one compiler and micro 

controller combination to another in a 

matter of weeks. This result is similar to 

that of Company A, see section 3.1. 

Reuse is very common across projects, and 

coding standard rules on layout and 

naming conventions were found to be 

helpful in this regard. 

 

4. QUANTITATIVE RESULTS 

Company C has an ongoing programme 

for improving customer satisfaction. To 

this end they are collecting software fault 

reports from the field, and tracking them 

on a regular basis. The incidence of 

critical software faults tends to vary 

across their products, and the intention is 

to identify measurements on source code, 

i.e. Internal Quality metrics, that would 

correlate with these fault data, i.e. 

Quality in Use: Satisfaction metric. Once 

such source code factors are identified, it 

will be possible to re-engineer the 

software to minimise their value; and 

thus, likely to minimise the incidence of 

critical faults in released software. 

 

Together with Company C we have 

collected code metrics for a number of 

their software products, and correlated 

them with the corresponding critical fault 

data. These code metrics fall into two 

categories: 

- incidence of coding standard 

violations, 

- traditional software metrics [2]. 

The results are documented in Sections 

4.1 and 4.2 respectively. 

4.1 Message Correlation 

As a pilot study we focused on 18 software 

products written in C++, and owned by a 

single business unit. Critical fault data 

for each of the products was available, 

covering a period of 12 months. In order 

not to disadvantage large projects, we 
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normalised these measurements of 

Quality in Use: Satisfaction by the size of 

the corresponding code base, i.e. amount 

of KLOC. 

Rather than narrowing the study to some 

specific coding standard or guidelines (see 

Section 2), we decided to include as many 

coding rules as possible, in our search for 

the ones that will correlate with the fault 

data. QA C++, static analyser for C++ 

from Programming Research, includes 

nearly 900 rules ranging from ISO 

Compliance and Undefined Behaviour [9], 

Best Practice [3][11][14][16][17], to code 

layout conventions. This includes rules 

pertaining to individual source files as 

well as issues occurring across files, see 

Table 1 for examples. 

confid
ence 

msg# QA C++ message text 

99.5% 1512 '%1s' has external linkage and 
is declared in more than one 
file. 

99% 1508 The typedef '%1s' is declared in 
more than one file. 

99% 2085 For loop declaration of '%1s' is 
hiding existing declaration. 

99% 4239 Class type control loop variable 
'%1s' modified in loop block. 

97.5% 4217 Variable '%1s' is not accessed 
after this initialisation before it 
is next modified. 

97.5% 4237 Class type control variable 
'%1s' not declared here. 

97.5% 3600 This 'int' literal is an octal 
number. 

95% 1505 The function '%1s' is only 
referenced in one translation 
unit. 

95% 4243 Multiple class type loop control 
variables found: '%1s'. 

95% 4325 Variable '%1s' is not accessed 
further. 

95% 4004 Continue statement found. 

95% 4208 Variable '%1s' is never used. 

0% 2015 This function may be called 
with default arguments. 

Table 1. Message correlation with critical 

fault data for a sample of QA C++ messages 

For every software product we calculated 

the occurrence of each QA C++ message, 

and normalised the measurements by the 

size of the product in KLOC. While we 

could look for correlations between these 

raw measurements for fault data and 

message frequencies, this would make an 

unnecessary assumption that both of 

these populations of measurements were 

distributed similarly. 

 

Instead, we decided to use ranks of the 

measurements only. If we were to order 

the software products according to fault 

data frequency, and for a given QA C++ 

message according to its frequency of 

occurrence, similarity between these two 

orderings would imply a positive 

correlation between the message and fault 

data. Considering that we are dealing 

with a large number of products, from 

statistical standpoint, it is not necessary 

that these orderings are identical, for 

there to be a significant correlation. Given 

that the number of permutations of 18 

entities: 18! = 18*17*…*2 = 

6,402,373,705,728,000 is a staggeringly 

large number, if a pair of orderings is 

within the 5% group that are the most 

similar, we can say with 95% confidence 

that they are correlated. 95% confidence 

interval is usually considered the 

minimum level to achieve statistical 

significance. 

 

This leaves the question of how we are 

going to judge similarity between two 

given orderings of 18 products. 

Spearman’s Rank Correlation Coefficient 

Rs [15] is a non-parametric statistical test, 

meaning that it works on the ranks of 

measurements. It evaluates to 1.0 if the 

orderings are exactly the same and -1.0 if 



 - 6 -

they are exactly opposite, i.e. one is an 

inversion of the other sequence. The 

closer the value of Rs to 0 the less similar 

both orderings are. In this study we are 

only interested in positive correlations 

between Quality in Use and Internal 

Quality metrics: Rs>0. Given that we are 

dealing with 18 products, in order to have 

95% confidence of a positive correlation 

between QA C++ message and fault data, 

the value of  Rs needs to be no smaller 

than 0.401. Table 1 documents critical 

values of Rs for higher confidence 

intervals. 

Confidence 95% 97.5% 99% 99.5% 99.9% 

Critical 
Value of Rs 

0.401 0.472 0.550 0.600 0.692 

Table 2. Critical Values of Spearman’s Rank 

Correlation Coefficient Rs for 18 entities 

The first 12 rows of Table 1 list QA C++ 

messages that are positively correlated 

with critical fault data for the 18 software 

products under consideration, with at 

least 95% confidence. As an illustration 

the last row contains the message that 

has the value of Rs closest to 0. Figures 1-

5 on page - 9 - display the correlation 

between the ranks of fault and message 

frequencies for each software product as a 

scatter plot, for a representative selection 

of messages from Table 1. Dots (software 

products) that lie on the y=x (diagonal) 

line represent complete agreement 

between the ranks. In Figure 1 dots are 

much closer to the diagonal line than in 

Figure 5, which visually confirms the 

accuracy of the Spearman’s Rank 

Correlation Coefficient. Figure 6 

corresponds to the message with the 

smallest value of Rs; for convenience both 

positive y=x and negative y=19-x 

correlation lines are drawn. As can be 

seen dots are equally distant from both 

diagonal lines.  

 

This result can be interpreted as follows: 

there is at least 95% likelihood that 12 

QA C++ messages detailed in Table 1 are 

positively correlated with critical faults in 

18 software products under consideration. 

This allows us to assume that by re-

engineering these products to reduce the 

incidence of these messages, future 

occurrence of critical faults may also be 

reduced. As the organisation is interested 

in improving customer satisfaction, 

targeting these messages and monitoring 

their frequency can supplement the 

existing quality procedures. 

 

It is worth pointing out that these 12 

recommended messages are Best Practice 

rules, rather than rules targeting 

Undefined Behaviour, e.g. array access 

out of bounds, or division by 0. Such rules 

targeting potential ‘bugs’ are unlikely to 

occur frequently in the code.  If for 18 

products most frequencies are 0 apart 

from a few, the Spearman’s Rank 

Correlation Coefficient will not exceed the 

critical value, and so the corresponding 

QA C++ message will not be flagged up as 

correlated with critical fault data. 

Therefore, it is necessary to supplement 

rules/messages identified by this 

statistical procedure with rules targeting 

bugs, portability issues, and other 

priorities identified for the software 

products in question. 

 

4.2 Metrics Correlation 

Apart from looking for correlations 

between critical faults and QA C++ 

messages, we were interested in 

examining whether traditional software 

metrics [2] could be of use. QA C++ 

calculates several function, file and class 
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based metrics. We have recorded the 

average, maximum and standard 

deviation value of every metric for each of 

the 18 software products. We then 

calculated the values of Spearman’s Rank 

Correlation Coefficient Rs between the 

critical fault and these metric data across 

the 18 products, which are collected in 

Table 3. Critical value of Rs at 95% 

confidence level is 0.401, and none of the 

metrics meet that for either average 

measurement, maximum or standard 

deviation. Therefore, we could not 

recommend any of these software metrics 

to be included in the quality initiative. 

 

5. SUMMARY 

In this paper we have proposed using 

coding standards compliance as a 

measure of Internal Quality of a Software 

System. The validity of this metric has 

been confirmed on a group of real-world 

software products, as for a number of 

coding rules it was found to correlate with 

a metric for Quality in Use: Satisfaction 

characteristic. Also, compliance to a 

coding standard has been found by two 

separate organisations to positively 

impact External Quality: Portability 

characteristic of their software. 

 

User satisfaction is a concrete concept, 

and can be measured, e.g. by recording 

faults in released software. Coding 

standards compliance can also be easily 

measured, and subsequently improved, 

but does not directly map to improved 

user experience. However, this could be 

inferred, if a correlation between user 

satisfaction and compliance to coding 

rules is found, as is the case in this paper. 

An interesting topic for a future study 

would be to empirically demonstrate 

validity of this cause and effect 

hypothesis, by examining whether 

incidence of faults will be reduced in 

proportion to improvement in coding 

standards compliance. 

Metric avg max Std 
dev 

Class metrics 

Coupling to other 
classes 

0.041 0.005 0.043 

Deepest inheritance 0.083 0.166 0.100 

Lack of cohesion within 
class 

-0.012 -0.061 -0.046 

Number of methods 
declared in class 

-0.098 -0.020 -0.023 

Number of immediate 
children 

0.055 0.025 0.061 

Number of immediate 
parents 

0.055 0.034 0.055 

Response for class -0.031 -0.057 -0.031 

Weighted methods in 
class 

-0.017 -0.034 -0.069 

Function metrics 

Cyclomatic complexity 0.087 -0.141 -0.234 

Number of GOTO's -0.153 -0.238 -0.154 

Number of code lines -0.061 -0.068 -0.256 

Deepest level of 
nesting 0.103 0.234 0.087 

Number of parameters 0.129 0.192 0.122 

Estimated static 
program paths 

-0.362 n/a
§
 0.084 

Number of function 
calls 

-0.102 -0.019 -0.239 

Number of executable 
lines 

0.017 0.018 0.009 

File metrics 

Comment to code ratio 0.283 0.153 0.287 

Number of distinct 
operands 

-0.220 -0.239 -0.304 

Number of distinct 
operators 

-0.035 0.260 0.124 

Total preprocessed 
code lines 

-0.074 0.142 -0.087 

Total number of tokens 
used 

-0.144 0.040 -0.138 

Total unpreprocessed 
code lines 

-0.073 0.077 -0.117 

Total number of 
variables 

-0.187 -0.044 -0.261 

                                                 
§
 For technical reasons we were not able to accurately 

calculate this value. 
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Table 3. Metrics correlation with fault data 

Critical value of Rs at 95% confidence level is 

0.401 
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Figure 1. correlation for message 1512 

Rs=0.649, confidence interval 99.5%  

 
Figure 2. correlation for message 1508 

Rs=0.568, confidence interval 99% 

 
Figure 3. correlation for message 4217 

Rs=0.533, confidence interval 97.5% 

 
Figure 4. correlation for message 1505 

Rs=0.466, confidence interval 95% 

 
Figure 5. correlation for message 4208 

Rs=0.403, confidence interval 95% 

 
Figure 6. correlation for message 2015 

Rs=0.001, i.e. no correlation 


