
Intel® Integrated Performance Primitives 2008

Boris Sabanin

Intel Corporation

boris.sabanin@intel.com

Abstract

The software product Intel® Integrated Performance Primitives (IPP) and new features are described. The
primitives are the building blocks that application developers can easily integrate into their products -
applications, components like media plug-ins or high level libraries, in order to significantly increase their
performance on Intel and compatible architectures with Windows, Linux or MacOSX operating system installed.
The IPP library covers many functional domains: image and signal processing; image coding and data
compression; data integrity and cryptography; speech, audio and video coding, and others. Besides of the
libraries IPP product contains 50 IPP based Samples released in the source codes. Some of the samples, for
example, JPEG2000 image codec and H264 video codec are competitive to the commercial products.

Several important new features were added to the product in 2008 in version IPP 6.0. We will consider two
of them in more details - a Deferred Mode Image Processing (DMIP) framework exploiting the CPU cache and
multi-core capability, and the IPP functions generated and optimized automatically by a special tool Spiral
developed at Carnegie Mellon University.

Keywords: Software library, high performance, image processing, signal processing, video coding, image
coding, data compressing, automatic code generation, multi-core.

1. Introduction

In spite of the fact that the first signal processing

library NSP developed by the IPP team in 1994

failed because Intel and Microsoft could not agree on

library's place at the hardware/software territory [1]

the team continued design, development and

optimization of Intel Performance libraries - Signal

Processing SPL, Image Processing IPL, and Speech

Recognition RPL. Later, in 2000 the Integrated

Performance Primitives were introduced to improve

API of the previous generation libraries. Today, IPP

library [2,3] covers more functional domains, works

in many operating systems; it is optimized for all

Intel CPUs and platforms. The IPP Samples released

with the library also have been transformed. At the

beginning the samples were just the source codes

demonstrating how to use and call IPP. Currently,

the samples include quite sophisticated applications

such as the Face Detection and Ray Tracing demo

applications, and image and video codecs which are

strongly competitive to commercial products, for

example JPEG2000 and H264 codecs. Designing and

developing IPP the team introduces new

technologies and applies new tools to improve the

development and optimization process as, for

example, it started to do with the Spiral tool [4]. We

will present the first results of the automatically

generating library codes in the paper.

2. IPP functionality

IPP is a library containing 10K functions. Many

of them are optimized for IA32, Intel®64, IA64, and

Atom™. The library works in operating systems

Windows, Linux, MacOSX and QNX. IPP consists

of 16 functional domains that cover Signal and

Image processing, Speech, Audio and Video coding,

String processing, Computer Vision, Speech

Recognition, Jpeg & Jpeg2000, Lossless Data

Compression, Cryptography, Realistic Rendering,

Data Integrity, Vector Math and Small Matrix

operations. Additionally to the library IPP customers

get more than 50 IPP Samples – applications and

components released in source codes. They are video

codecs MPEG2, MPEG4, H264, VC1 and AVS;

audio codecs MP3, AAC, AC3; Jpeg and Jpeg2000

codecs, speech codecs G722, G723, G726, G728;

Face detection demo application, Deferred Mode

Image Processing framework, Ray Tracing viewer,

Data Compression libraries and utilities GZIP, ZLIB,

LZO, BZIP2; interfaces for Java, C#, VB, F90, and

C++.

One of the sources where the ideas and new

functionality requests come from is IPP forum at

Intel Software Network web site [5]. The IPP team is

actively involved into discussions with IPP users and

is very proud of the activity level the IPP customers

ask questions, complain of issues and propose

solutions.

3. Performance provided in IPP

One of the performance indicators

characterizing any signal processing library is

performance of the FFT/DFT transform a library

provides. According to FFTW [6] in most of the

benchmarks FFTW evaluates and presents the IPP

FFT is faster than all known FFT implementations.

Performance of several single precision read data

FFT implementations in MFlops, higher is better, is

presented on Fig.1; IPP FFT is on the top.

Figure 1. Performance in MFlops of different FFT

implementations published on FFTW [3] site

IPP is fastest in image processing (compare

with Matrox), data compression (compare

gzip, zlib, LZO), image coding (compare

cryptography (compared with OpenSSL). And,

finally IPP is a faster library compared to

library. For example, relative performance

AMD APL 1.1 and Intel IPP 5.3 functions

on AMD Opteron system, higher is better

is presented on Fig. 2.

Figure 2. Relative performance of AMD APL 1.1
and Intel IPP 5.3 functions measured on Opteron

4. New features in IPP 2008

Several new features have been introduced in

IPP 6.0. Shorty, they are: new domain Data Integrity

Performance provided in IPP

One of the performance indicators

any signal processing library is

FFT/DFT transform a library

in most of the

presents the IPP

implementations.

Performance of several single precision read data

FFT implementations in MFlops, higher is better, is

presented on Fig.1; IPP FFT is on the top.

Performance in MFlops of different FFT

published on FFTW [3] site.

IPP is fastest in image processing (compared

with Matrox), data compression (compared with

gzip, zlib, LZO), image coding (compared with IJG),

with OpenSSL). And,

library compared to AMD APL

For example, relative performance of the

AMD APL 1.1 and Intel IPP 5.3 functions measured

better (for IPP),

Relative performance of AMD APL 1.1

and Intel IPP 5.3 functions measured on Opteron.

Several new features have been introduced in

IPP 6.0. Shorty, they are: new domain Data Integrity

with Reed Solomon coding functions

for i7 CPU (codename Nehalem) and Atom™;

high level data compression libraries;

mode image processing framework, and

processing functions generated automati

consider several of the features.

4.1. Deferred Mode Image Processing

DMIP [7] was introduced in response to a

requirement from a strategic IPP customer involved

in large-scale image processing. The DMIP

framework effectively handles processing of

image data that don't fit entirely within the processor

L2 cache. Three main features of DMIP

image processing capability: a) processing

by the fragments that fit L2 cache

highly optimized IPP in such fragments processing

c) parallel processing which could be proce

different fragments or execution of different

independent branches of a graph. To start such

processing you create a task description as a DAG

(directed acyclic graph), and translate the graph

a sequence of IPP calls. To complete (deferred)

processing you run the generated sequence of IPP

calls. For example, you need to filter

harmonization filter. The operation can be expressed

as

D = min(Tmx,max(Tmn,(A-(A-F

where Fb is a filter box, Tmn and Tmx are the min

and max threshold levels, and C is a constant.

Then at the symbolic level you write

Image A, D;

Kernel K;

Ipp32f C;

Ipp8u Tmn, Tmx;

Graph O=To32f(A);

D=Max(Min(To8u(O-(O-O*K)*C),Tmx),Tmn);

The DAG corresponding to the code

Fig. 3.

Figure 3. DMIP graph for a harmonization filter

The graph can be compiled once and executed

many times. Every operation (a node of the graph)

operates upon an image slice (DMIP

most of the cases it is an IPP call (feature b);

functions, optimization

CPU (codename Nehalem) and Atom™; the

evel data compression libraries; the deferred

, and the signal

processing functions generated automatically. Let us

Deferred Mode Image Processing

was introduced in response to a

requirement from a strategic IPP customer involved

scale image processing. The DMIP

processing of large

data that don't fit entirely within the processor

L2 cache. Three main features of DMIP improve

: a) processing of images

cache; b) using the

in such fragments processing;

which could be processing of

different fragments or execution of different

. To start such

processing you create a task description as a DAG

(directed acyclic graph), and translate the graph into

IPP calls. To complete (deferred)

processing you run the generated sequence of IPP

to filter an image by a

harmonization filter. The operation can be expressed

Fb(A))*c)),

, Tmn and Tmx are the min

C is a constant.

Then at the symbolic level you write C++ code

O*K)*C),Tmx),Tmn);

corresponding to the code is presented on

DMIP graph for a harmonization filter

The graph can be compiled once and executed

a node of the graph)

DMIP feature a); in

most of the cases it is an IPP call (feature b); the

slices are processed in parallel (feature c). Processing

with DMIP compared with traditional IPP processing

could be up to 3 times faster. On Fig. 4, we can

compare performance results for the filtering

operation on image 2048x2048 with Harmonization

filter 7x7 obtained with DMIP and traditional IPP

calls.

Figure 4. Performance of the Harmonization filter

operation with IPP and DMIP. CPU cycles per pixel,
the less the better.

4.2. Automatically generated IPP functions

IPP 6.0 includes a new functional domain called

IPP Gen. In contrast to other parts of IPP, this library

is not implemented by human developers but is

entirely computer generated - probably "a first" in

high performance library development anywhere.

The tool is called Spiral and is developed at Carnegie

Mellon University [8].

For given transform to be implemented Spiral

generates and evaluates many different possible

algorithms represented in an internal math language.

Further, Spiral performs optimization such as

memory hierarchy optimization, vectorization (for

example with SSE3), and parallelization for multiple

cores by rewriting mathematical expression. In the

end, Spiral outputs the fastest code found which is

often faster than existing human written code. On

Fig. 5 we compare performance of the Spiral

generated code for DFT transform of different size to

the IPP existing code in the signal processing library.

Performance is given in CPU cycles, the less the

better.

Figure 5. DFT for complex data of double type.

Performance of Spiral generated code compared to
IPP existing code. CPU cycles, the less the better.

5. Conclusion

Several new important features have been added

in IPP 6.0: the deferred mode image processing

framework and the automatically generated

functions. Both define a direction of the library

development: introducing a high abstraction level to

better utilize new Intel architecture capabilities and

development and optimization automation. IPP is a

library which is unique in performance provided on

Intel and compatible platforms, in functionality

covered, in the technologies the team uses in its

development, and in supporting software community.

6. References

[1] Robert A. Burgelman, Strategy Is Destiny, The Free

Press, pp. 236, 2002.

[2] Intel® Integrated Performance Primitives (IPP)

http://www3.intel.com/cd/software/products/asmo-

na/eng/perflib/219780.htm

[3] Stewart Taylor, Optimizing Applications for Multi-

Core Processors, Using the Intel® Integrated Performance

Primitives, Intel Press, Second Edition, 2007

[4] http://www.spiral.net

[5] Intel® Software Network web site

http://softwarecommunity.intel.com/isn/Community/en-

US/forums/1274/ShowForum.aspx

[6] http://www.fftw.org/speed/

[7] Alexander Kibkalo, Michael Lotkov, Ignat Rogozhkin,

Alexander Turovets, Deferred Image Processing in Intel®

IPP Library, Proceedings of the Computer Graphics and

Imaging conference, Innsbruck Austria, 2008.

[8] Markus Puschel, Jose M. F. Moura, Jeremy Johnson,

David Padua, Manuela Veloso, Bryan Singer, Jianxin

Xiong, Franz Franchetti, Aca Gacic, Yevgen Voronenko,

Kang Chen, Robert W. Johnson and Nicholas Rizzolo,

SPIRAL: Code Generation for DSP Transforms,

Proceedings of the IEEE, special issue on "Program

Generation, Optimization, and Adaptation," Vol. 93, No. 2,

pp. 232- 275, 2005

