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Abstract  
Performance modeling and simulation offer powerful approaches to predict performance characteristics of 

software applications and in particular web applications. At the same time the usage of modeling techniques in 

real projects is still limited due to comprehensive structure of applications and impossibility to know internal 

structure of application’s components needed to create a precise model. In our work we build and evaluate the 

high level abstraction models of Content Management System “Joomla” to estimate their ability to provide 

reliable predictions for different performance characteristics. To build the models we consider three 

formalisms: Layered Queuing Networks, Performance Evaluation Process Algebra and Queuing Petri Nets. 

Predictions obtained from models simulation have been compared with measurements of the real system by HP 

Load Runner toolkit. Results show that overall throughput of the system can be predicted with high level of 

accuracy while prediction of response time by the same models is less reliable.                                                                                     
 
Keywords: Software performance simulation, performance modeling, web based systems  
 

1. Introduction 
 

Performance simulation of client-server systems 

has been a topic of interest for software engineering 

for a long time. A lot of formalisms and supporting 

methods have been developed to describe this kind of 

systems and obtain performance characteristics from 

related models. Most important of them are: Queuing 

Networks, Stochastic Process Algebras and 

Stochastic Petri Nets. All of these techniques have 

been applied to client-server applications and in 

particular to web applications, that showed their 

powerful ability to predict system behavior from the 

performance point of view. However the software 

modeling still has not become a daily practice in 

product life-cycle due to the complexity of model 

creation. It is caused by comprehensive structure of 

real-life applications and “black-box” nature of the 

application’s components. To investigate model 

ability to predict system properties without detail 

information on internal structure we selected three 

different modern performance description formalisms 

to describe Content Management System “Joomla” 

[13]. During our study we built three different 

performance models of this system deployed in 

several configurations of distributed environment. 

These models have been calibrated and analyzed to 

obtain performance predictions, which have been 

compared with experimental results received by HP 

Load Runner package [7]. 

2. Related Work 
 

Black box performance modeling approaches are 

most promising ones for analysis of real-life 

computer systems. Successful applications of such 

approaches for performance modeling of self-tuning 

controllers for web servers, storage systems and 

parallel applications are shown in [3, 8, 10]. These 

papers are focused on the techniques to understand 

parameter space of black-box system. On the other 

hand we consider simple performance models with 

high level of abstraction and estimate their 

capabilities to predict performance characteristic of 

real-life web application. 

 

3. Problem Statement 
 

The goal of our study is to analyze formalisms 

which allow estimating performance characteristics 

for the system with unknown internal structure. In 

particular we are interested in the following 

questions: 

• How to map different system architecture entities to 
the model elements (build the models)? 

• What is the method to calibrate the models? 
• Are models capable to make reliable predictions for 

throughput characteristic? 

• What kind of predictions can be obtained from the 

models for response time characteristic? 

 



Our investigations of these issues are based on 

analysis of the experimental test system which has 

been modeled with help of selected formalisms. 

 

4. Performance Modeling Formalisms 
 

For our study we chose three formalisms by one 

from every group of modeling approaches: Queuing 

Networks (QN), Stochastic Process Algebras (SPA) 

and Stochastic Petri Nets (SPN). During this 

selection we were considering the following criteria: 

• actuality: approach should be widely used for 

different performance investigations and being 

actively supported/developed; 

• availability of tools: approach should be supported 

by easy-to-work tools. 

Finally we decided to select Layered Queuing 

Networks (LQN) and LQNSolver tool [14] from QN. 

From SPA we chose Performance Evaluation Process 

Algebra (PEPA) and PEPA Workbench [15]. Also 

we opt for Queuing Petri Nets (QPN) and QPN 

Modeling Environment (QPME) [17] from SPN.  

 

4.1 Layered Queuing Networks  
 

Layered Queuing Networks (LQN) model [4, 5] 

is a canonical form for extended queuing networks 

with a layered structure. The layered structure arises 

from servers at one level sending requests to servers 

at lower levels as a consequence of request from a 

higher level. LQN is applied to any extended queuing 

network with multiple resource possession, in which 

multiple resources are held in a nested fashion. 

Resources are released in the reverse order of their 

acquisition and the resource order is consistent across 

the system. So, higher layer resources are acquired 

earlier and released later than in lower layers. 

 
Figure 1. Example of LQN Model 

 

Figure 1 illustrates the LQN notation with an 

example of a web server that has a connection to 

database and serves both static and dynamic pages. 

In LQN software resources are called tasks. The 

tasks have queues and provide classes of service 

which are called entries. In Figure 1 tasks are shown 

as parallelograms, containing nested parallelograms 

to describe entries. Processor resources are shown as 

circles attached to tasks which are using them. 

Stacked icons represent tasks or processors with 

multiplicity forming a multiserver. The multiserver 

may represent either a multi-threaded task, or a 

collection of identical users, or a symmetric 

multiprocessor with a common scheduler. 

Multiplicity is shown on the diagram with a label in 

brackets. For example, there are 20 copies of the task 

WebServer on Figure 1.  

 

Entries have directed arcs to other entries at 

lower layers to represent service requests (requests 

may go directly through the layers). A request from 

one entry to another may return a reply to the original 

entry (a synchronous request) indicated on Figure 1 

by solid arrows with closed arrowheads. For 

example, task AppServer send a request to task 

Database which then issue a request to task 

FileServer. While task FileServer is serving the 

request, tasks Database and AppServer are blocked. 

Alternatively a request may be forwarded to another 

entry for later reply, or may return no reply (an 

asynchronous request). 

 

4.2 Performance Evaluation Process Algebra  
 

In Performance Evaluation Process Algebra 

(PEPA) [6], system is considered as a set of 

components which carries out activities either 

individually or in cooperation with other 

components. Each activity is characterized by an 

action type α and a duration r which is exponentially 

distributed. This is written as a pair (α, r). Duration 

may be any positive real number or it may be 

unspecified. Activity is called shared if several 

components synchronize over it. The distinguished 

symbol ΤΤΤΤ is used to indicate that the rate is not 

specified by the component. Such component is said 

to be passive with respect to this action type. The rate 

of the shared activity is defined by cooperation with 

another component. 

 

PEPA provides a set of combinators which allow 

building expressions to define behavior of 

components via activities. These combinators are 

presented below: 

• Prefix (α, r).P: Prefix is the basic mechanism by 

which behavior of components is constructed. This 



combinator implies that after the component has 

made activity (α, r) it behaves as component P; 

• Choice P1+P2: This combinator represents a 

competition between components. The system may 

behave either as component P1 or as P2. The 

probability to choose one of these components is 

defined by the rate of their first activity; 

• Cooperation P1<L>P2: This describes the 

synchronization of components P1 and P2 over the 

activities in the cooperation set L. The components 

may proceed independently with activities whose 

types do not belong to this set. In cooperation, the 

rate of a shared activity is defined as the rate of the 

slowest component; 

• Hiding P/L: This component behaves like P except 

that any activities of types within the set L are 

hidden, i.e. such an activity exhibits the unknown 

type τ and the activity can be presented as an 

internal delay by the component. Such activity 

cannot be carried out in cooperation with any other 

component. 

• Constant A def = P: Constants are components 

whose meaning is given by a defining statement: A 

def = P gives the constant A the behavior of the 

component P. This is how we assign names to 

components.  

 

4.3 Queuing Petri Net  
 

The main idea behind the Queuing Petri Net 

(QPN) modeling paradigm [1] is to add queuing and 

timing aspects to places of modeling formalism 

Colored Generalized Stochastic Petri Net (CGSPN) 

(subset of SPN) to provide means for direct 

representation of queuing disciplines. A place of 

CGSPN with an integrated queue is called a queuing 

place and consists of two components: the queue and 

a depository. This is depicted on Figure 2. 

 

The behavior of the net is the following: tokens 

fired into a queuing place by any of its input 

transitions, are inserted into the queue according to 

the queue’s scheduling strategy. After completion of 

its service, a token is immediately moved to the 

depository, where it becomes available for output 

transitions of the place. This type of queuing place is 

called timed queuing place. Also QPN introduces 

immediate queuing places (ordinary places) which 

allow pure scheduling aspects to be described. 

Tokens in ordinary places can be viewed as being 

served immediately. Scheduling in such places has 

higher priority than both scheduling/service in timed 

queuing places and firing of timed transitions. The 

rest of the net behaves like a normal CGSPN.  

 

As it is shown in [2, 9] QPN has greater 

expressive modeling power than QN, extended QN 

and SPN. This formalism provides possibilities to 

model simultaneous resource possession, blocking 

synchronization and scheduling strategies.  

 
Figure 2. Structure of Queuing Place 

 

5. Architecture of the Test System 
 

The following criteria have been considered 

during hardware and software selection for this 

study: 

• hardware is to be widely available, represent 

different classes of systems and provide enough 

power to run appropriate applications; 

• software should be a common and popular web 

application with comprehensive internal structure, 

which hardly can be modeled in details.  

 

For our test system we have chosen Content 

Managing System Joomla [13] deployed in the 

distributed environment with load balancer which is 

topologically placed in front of two web servers. 

[Figure 3]. Joomla is popular and convenient CMS 

used for many web sites. Being based on PHP and 

MySql it can be easily installed and configured in 

most of the environments. 

 

Selected hardware and installed software are 

introduced in Table 1. All these hardware has been 

connected through 100Mbit Ethernet. 
 

Table 1. Hardware/Software for Test System 

Title Hardware Software 

Web Load 

Balancer 

2.16Ghz 

Core2Duo PC 

Apache Web Server v2.2 

[12] with enabled 

modules mod_proxy and 

mod_proxy_balancer 

Web 

Server 1 

3.5Ghz 

Celeron PC 

Apache Web Server v2.2 

with enabled module 

mod_fast_cgi, 

PHP v5.2.6 [16] compiled 

with fast_cgi support; 

CMS Joomla, v1.5.3 

Web 

Server 2 

2.2 Ghz 

Core2Duo PC 

DB 

Server 

2.2 Ghz 

Core2Duo PC 
MySQL v 5.1 

 

 



 
Figure 3. Test System Infrastructure 

 

Three different configurations have been 

analyzed in our study: 

• Configuration 1: all client requests are processed 

by WebServer 1 

• Configuration 2: all client requests are processed 

by Web Server 2 

• Configuration 3: all client requests are sent to Web 

Load Balancer, which forwards them to Web 

Server 1 and Web Server 2. 

 

To verify model predictions we have measured 

throughput and response time characteristics of the 

system in all these configurations by HP Load 

Runner [7]. This tool is widely used for load-testing 

of web applications. 

 

6. Models of the System  
 

To define the performance models for our system 

we separated the following entities, which have been 

later mapped to the appropriate model elements: 

• Clients: independent tasks which send incoming 

requests to the Load Balancer. We used so-called 

closed workload where client can send a next 

request only when server has completed the 

previous one. 

• Load Balancer: server which forwards requests to 

one of the Web Servers. The time for forwarding is 

negligible. 

• WebServer 1 and WebServer 2: servers which run 

the Joomla installation and perform main part of 

request processing. Times to process single request 

by these servers are TWS1 and TWS2 respectively. 

For convenience in our models we use inverse 

values called service rates: RateWS1=TWS1
-1

 and 

RateWS2= TWS2
-1

. 

• Database: server which runs MySql installation. 

Service rate for this server is RateDB. 

The rates have been defined through a normalization 

procedure described later. In the next sections we’ll 

show how these entities are mapped to model 

elements. 

6.1 LQN Model 
    

In LQN model every entity derived above from 

the system architecture is mapped directly to a task 

element. Since tasks are running on processors and 

contain entries we have to define two more kinds of 

elements to complete the model. Graphical notation 

of the resulting model is shown on Figure 3. Every 

task is mapped to processor (circle) and contains 

entry which consumes processor time. Web Server 2 

is shown with two tasks to reflect its Core2Duo CPU.  

 

Time demands for WebServer 1, WebServer 2 

and Database entries are defined as RateWS1
-1

, 

RateWS2
-1

, RateDB
-1

 respectively. The demands for 

Clients and Load Balancer entries are negligible. 

 
Figure 3. LQN Model of Test System 

 

6.2 PEPA Model  
 

In case of PEPA model system entities are 

mapped to components. Every component runs 

infinitely and cooperates with other ones through 

synchronizing actions. Also in PEPA model there is 

no need to implement Load Balancer directly – in 

can be realized implicitly through choice cooperator 

of the client component. Full PEPA model is listed 

below.  

 
// Rate for intermediate actions  
r=10000; 
// Ratio of the requests to the WS_2.  
d=0.7; 
// CLIENT_0 – client, also reflects the presence of Load 
balancer 
CLIENT_0=(move,r).CLIENT_0_0; 
CLIENT_0_0 =(move_2_0,d*r).CLIENT_0+ 
    (move_1_3,(1-d)*r).CLIENT_0; 
// Core2Duo Web Server 2 with two cores 

WS_2_0=(move_2_0,Τ).WS_2_0_0; 
WS_2_0_0=(move_1_1,r).WS_2_0 
+(move_1_2,r).WS_2_0; 

T_1 =  (move_1_1,Τ).(comp_1, RateWS2). 

(move_db, Τ).T_1; 

T_2 =  (move_1_2,Τ).(comp_2, RateWS2). 

(move_db, Τ).T_2; 
// Web Server 1 

WS_1 =  (move_1_3, Τ).(comp_3, RateWS1). 

(move_db, Τ).WS_1; 
// Database 
DB_0=(move_db, RateDB).DB_0 
CLIENT_0[40]<move_2_0,move_1_3> ((WS_2_0 <move_1_1, 
move_1_2> (T_1 <> T_2 ))<> WS_1) <move_db> DB_0 



6.3 QPN Model 
 

Elements of QPN formalism provide an easy way 

to represent architecture entities [9]: 

• Web Server 1, Web Server 2, DB Server are 

mapped to queuing places with Processor-Sharing 

(PS) scheduling strategy. The service rates of 

places correspond to time demands of servers; 

• Clients are mapped to queuing place with Infinite 

Server (IS) scheduling strategy which is used to 

represent clients sending requests to the system. 

The service time of this place corresponds to the 

average load; 

• Thread pools of Web Servers are mapped to an 

ordinary place. 

 
Figure 4. QPN Model of Test System 

 

Two types of tokens (token colors) are used in 

the model for distinguishing requests between web 

servers: x and y. In QPN model Load Balancer was 

not implemented directly as it was done in PEPA. 

This implementation was realized implicitly through 

choice of immediate transition from a client request. 

 

7. Models Calibration 
 

Before starting models analysis we need to 

define RateWS1, RateWS2 and RateDB parameters in our 

models, i.e. calibrate our models.  To accomplish it 

we performed a measurement of the transaction 

response time of the Web Server 2 with only one 

virtual user. Received response time of overall CPU 

load was about 0.6 second with average 35% 

percentage. Taken into account that this server has 

two cores and both of them equally participate in 

handling requests (due to used module mod_fast_cgi 

which starts several instances of PHP) the time to 

handle the request by one core is 0.6*0.35*2=0.42 

sec. This is Web Server CPU depended part of the 

request processing and the estimation of the service 

rate of another CPU can be received by normalizing 

of this time to CPU frequency. For Web Server 1 we 

received: 0.42/3.5*2.2 = 0.264 sec. Among the Web 

Server CPU depended part of the request processing 

there is another part, which takes 0.6-0.42=0.18 sec. 

and it’s treated as Database processing time. The 

rates of the models are defined as follows: 

• RateWS1: 0.42-1 =2.38 sec-1 

• RateWS2: 0.26
-1

 =3.78 sec-1 

• RateDB: 0.18-1 =5.55 sec-1. 

These values have been used in model analysis. 

 

8. Models Analysis 
 

During model analysis we made performance 

predictions of the  system behavior under different 

external workload by varying number of clients 

simultaneously sending requests to the system from 1 

to 40. Every model has been analyzed with its 

corresponding technique. 

 

For LQN model we used spex utility, which is 

included in LQNS package. This tool reads 

parameterized LQN model, replaces parameter 

names with parameter values and then solves the 

model using lqns solver. Spex gathers measures of 

interest and creates text report with obtained data. 

 

During analysis of PEPA model we used 

experimentation feature built-in in the PEPA 

Workbench. It provides the same functionality for 

PEPA models as spex for LQN models. Also has 

graphical user interface and is able to build graphs 

from gathered data. 

 
Figure 5. Metrics for Configuration 3 

 

Analysis of QPN model has been done by 

SimQPN simulator of QPME package executed as a  

standalone Java application. QPME doesn’t have any 

possibilities to simulate parameterized QPN models. 

That’s why we developed a Perl script to simulate 

different workload by replacing parameters of QPN 

model in a loop and extract essential data from 

SimQPN output for further analysis. 

 

Simulation results and experimental data for 

infrastructure 3 with Load Balancer are presented on 

Figure 5 and relative errors for all analyzed 

configurations are shown on Figure 6. It can be seen 

that our models are able to predict throughput 

(transaction per second) of the system with higher 

precision with errors less then 10%. While the 



predictions for response time are less precise and 

their errors are below 30%. The most possible reason 

of these errors is an influence of an unrevealed 

internal system structure. So it would be promising to 

analyze the effect of hidden queue buffers and 

request handle threads to model predictions. 

 

It has been revealed that the fastest utility for 

model simulation is lqns. From another point of view 

QPME tool and PEPA Workbench provide 

convenient GUI editors for model creation. 

 
Figure 6. Relative Errors 

 

9. Conclusion and Future Work 
 

During this study we have created performance 

models of the content management system “Joomla” 

using three different software performance 

description formalisms. Models have been calibrated 

using measurements of the test system with single-

user workload. The comparison of the model 

simulation results with experimental data obtained by 

HP Load Runner has shown that all of the applied 

techniques are able to predict system behavior 

without detailed knowledge about the internal system 

structure. Difference from model predictions and 

experimental results lay in the acceptable area: for 

throughput it’s less then 10%, for response time – 

less then 30%. Such results make possible to use 

model predictions during early performance analysis 

of infrastructure for distributed business applications. 

 

The investigation of errors caused by hidden 

structure of system components and methods to 

estimate them is the subject for further work. 
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