
Performance Prediction of Client-Server Systems

by high-level Abstraction Models

Alexander Pastsyak

Author Affiliation line 1

Author Affiliation line 2

email:

Alexander.Pastsyak@siemens.com

Yana Rebrova

Author Affiliation line 1

Author Affiliation line 2

email:

Yana.Rebrova@siemens.com

Vladimir Okulevich

Author Affiliation line 1

Author Affiliation line 2

email:

Vladimir.Okulevich@siemens.com

Abstract
Performance modeling and simulation offer powerful approaches to predict performance characteristics of

software applications and in particular web applications. At the same time the usage of modeling techniques in

real projects is still limited due to comprehensive structure of applications and impossibility to know internal

structure of application’s components needed to create a precise model. In our work we build and evaluate the

high level abstraction models of Content Management System “Joomla” to estimate their ability to provide

reliable predictions for different performance characteristics. To build the models we consider three

formalisms: Layered Queuing Networks, Performance Evaluation Process Algebra and Queuing Petri Nets.

Predictions obtained from models simulation have been compared with measurements of the real system by HP

Load Runner toolkit. Results show that overall throughput of the system can be predicted with high level of

accuracy while prediction of response time by the same models is less reliable.

Keywords: Software performance simulation, performance modeling, web based systems

1. Introduction

Performance simulation of client-server systems

has been a topic of interest for software engineering

for a long time. A lot of formalisms and supporting

methods have been developed to describe this kind of

systems and obtain performance characteristics from

related models. Most important of them are: Queuing

Networks, Stochastic Process Algebras and

Stochastic Petri Nets. All of these techniques have

been applied to client-server applications and in

particular to web applications, that showed their

powerful ability to predict system behavior from the

performance point of view. However the software

modeling still has not become a daily practice in

product life-cycle due to the complexity of model

creation. It is caused by comprehensive structure of

real-life applications and “black-box” nature of the

application’s components. To investigate model

ability to predict system properties without detail

information on internal structure we selected three

different modern performance description formalisms

to describe Content Management System “Joomla”

[13]. During our study we built three different

performance models of this system deployed in

several configurations of distributed environment.

These models have been calibrated and analyzed to

obtain performance predictions, which have been

compared with experimental results received by HP

Load Runner package [7].

2. Related Work

Black box performance modeling approaches are

most promising ones for analysis of real-life

computer systems. Successful applications of such

approaches for performance modeling of self-tuning

controllers for web servers, storage systems and

parallel applications are shown in [3, 8, 10]. These

papers are focused on the techniques to understand

parameter space of black-box system. On the other

hand we consider simple performance models with

high level of abstraction and estimate their

capabilities to predict performance characteristic of

real-life web application.

3. Problem Statement

The goal of our study is to analyze formalisms

which allow estimating performance characteristics

for the system with unknown internal structure. In

particular we are interested in the following

questions:

• How to map different system architecture entities to
the model elements (build the models)?

• What is the method to calibrate the models?
• Are models capable to make reliable predictions for

throughput characteristic?

• What kind of predictions can be obtained from the

models for response time characteristic?

Our investigations of these issues are based on

analysis of the experimental test system which has

been modeled with help of selected formalisms.

4. Performance Modeling Formalisms

For our study we chose three formalisms by one

from every group of modeling approaches: Queuing

Networks (QN), Stochastic Process Algebras (SPA)

and Stochastic Petri Nets (SPN). During this

selection we were considering the following criteria:

• actuality: approach should be widely used for

different performance investigations and being

actively supported/developed;

• availability of tools: approach should be supported

by easy-to-work tools.

Finally we decided to select Layered Queuing

Networks (LQN) and LQNSolver tool [14] from QN.

From SPA we chose Performance Evaluation Process

Algebra (PEPA) and PEPA Workbench [15]. Also

we opt for Queuing Petri Nets (QPN) and QPN

Modeling Environment (QPME) [17] from SPN.

4.1 Layered Queuing Networks

Layered Queuing Networks (LQN) model [4, 5]

is a canonical form for extended queuing networks

with a layered structure. The layered structure arises

from servers at one level sending requests to servers

at lower levels as a consequence of request from a

higher level. LQN is applied to any extended queuing

network with multiple resource possession, in which

multiple resources are held in a nested fashion.

Resources are released in the reverse order of their

acquisition and the resource order is consistent across

the system. So, higher layer resources are acquired

earlier and released later than in lower layers.

Figure 1. Example of LQN Model

Figure 1 illustrates the LQN notation with an

example of a web server that has a connection to

database and serves both static and dynamic pages.

In LQN software resources are called tasks. The

tasks have queues and provide classes of service

which are called entries. In Figure 1 tasks are shown

as parallelograms, containing nested parallelograms

to describe entries. Processor resources are shown as

circles attached to tasks which are using them.

Stacked icons represent tasks or processors with

multiplicity forming a multiserver. The multiserver

may represent either a multi-threaded task, or a

collection of identical users, or a symmetric

multiprocessor with a common scheduler.

Multiplicity is shown on the diagram with a label in

brackets. For example, there are 20 copies of the task

WebServer on Figure 1.

Entries have directed arcs to other entries at

lower layers to represent service requests (requests

may go directly through the layers). A request from

one entry to another may return a reply to the original

entry (a synchronous request) indicated on Figure 1

by solid arrows with closed arrowheads. For

example, task AppServer send a request to task

Database which then issue a request to task

FileServer. While task FileServer is serving the

request, tasks Database and AppServer are blocked.

Alternatively a request may be forwarded to another

entry for later reply, or may return no reply (an

asynchronous request).

4.2 Performance Evaluation Process Algebra

In Performance Evaluation Process Algebra

(PEPA) [6], system is considered as a set of

components which carries out activities either

individually or in cooperation with other

components. Each activity is characterized by an

action type α and a duration r which is exponentially

distributed. This is written as a pair (α, r). Duration

may be any positive real number or it may be

unspecified. Activity is called shared if several

components synchronize over it. The distinguished

symbol ΤΤΤΤ is used to indicate that the rate is not

specified by the component. Such component is said

to be passive with respect to this action type. The rate

of the shared activity is defined by cooperation with

another component.

PEPA provides a set of combinators which allow

building expressions to define behavior of

components via activities. These combinators are

presented below:

• Prefix (α, r).P: Prefix is the basic mechanism by

which behavior of components is constructed. This

combinator implies that after the component has

made activity (α, r) it behaves as component P;

• Choice P1+P2: This combinator represents a

competition between components. The system may

behave either as component P1 or as P2. The

probability to choose one of these components is

defined by the rate of their first activity;

• Cooperation P1<L>P2: This describes the

synchronization of components P1 and P2 over the

activities in the cooperation set L. The components

may proceed independently with activities whose

types do not belong to this set. In cooperation, the

rate of a shared activity is defined as the rate of the

slowest component;

• Hiding P/L: This component behaves like P except

that any activities of types within the set L are

hidden, i.e. such an activity exhibits the unknown

type τ and the activity can be presented as an

internal delay by the component. Such activity

cannot be carried out in cooperation with any other

component.

• Constant A def = P: Constants are components

whose meaning is given by a defining statement: A

def = P gives the constant A the behavior of the

component P. This is how we assign names to

components.

4.3 Queuing Petri Net

The main idea behind the Queuing Petri Net

(QPN) modeling paradigm [1] is to add queuing and

timing aspects to places of modeling formalism

Colored Generalized Stochastic Petri Net (CGSPN)

(subset of SPN) to provide means for direct

representation of queuing disciplines. A place of

CGSPN with an integrated queue is called a queuing

place and consists of two components: the queue and

a depository. This is depicted on Figure 2.

The behavior of the net is the following: tokens

fired into a queuing place by any of its input

transitions, are inserted into the queue according to

the queue’s scheduling strategy. After completion of

its service, a token is immediately moved to the

depository, where it becomes available for output

transitions of the place. This type of queuing place is

called timed queuing place. Also QPN introduces

immediate queuing places (ordinary places) which

allow pure scheduling aspects to be described.

Tokens in ordinary places can be viewed as being

served immediately. Scheduling in such places has

higher priority than both scheduling/service in timed

queuing places and firing of timed transitions. The

rest of the net behaves like a normal CGSPN.

As it is shown in [2, 9] QPN has greater

expressive modeling power than QN, extended QN

and SPN. This formalism provides possibilities to

model simultaneous resource possession, blocking

synchronization and scheduling strategies.

Figure 2. Structure of Queuing Place

5. Architecture of the Test System

The following criteria have been considered

during hardware and software selection for this

study:

• hardware is to be widely available, represent

different classes of systems and provide enough

power to run appropriate applications;

• software should be a common and popular web

application with comprehensive internal structure,

which hardly can be modeled in details.

For our test system we have chosen Content

Managing System Joomla [13] deployed in the

distributed environment with load balancer which is

topologically placed in front of two web servers.

[Figure 3]. Joomla is popular and convenient CMS

used for many web sites. Being based on PHP and

MySql it can be easily installed and configured in

most of the environments.

Selected hardware and installed software are

introduced in Table 1. All these hardware has been

connected through 100Mbit Ethernet.

Table 1. Hardware/Software for Test System

Title Hardware Software

Web Load

Balancer

2.16Ghz

Core2Duo PC

Apache Web Server v2.2

[12] with enabled

modules mod_proxy and

mod_proxy_balancer

Web

Server 1

3.5Ghz

Celeron PC

Apache Web Server v2.2

with enabled module

mod_fast_cgi,

PHP v5.2.6 [16] compiled

with fast_cgi support;

CMS Joomla, v1.5.3

Web

Server 2

2.2 Ghz

Core2Duo PC

DB

Server

2.2 Ghz

Core2Duo PC
MySQL v 5.1

Figure 3. Test System Infrastructure

Three different configurations have been

analyzed in our study:

• Configuration 1: all client requests are processed

by WebServer 1

• Configuration 2: all client requests are processed

by Web Server 2

• Configuration 3: all client requests are sent to Web

Load Balancer, which forwards them to Web

Server 1 and Web Server 2.

To verify model predictions we have measured

throughput and response time characteristics of the

system in all these configurations by HP Load

Runner [7]. This tool is widely used for load-testing

of web applications.

6. Models of the System

To define the performance models for our system

we separated the following entities, which have been

later mapped to the appropriate model elements:

• Clients: independent tasks which send incoming

requests to the Load Balancer. We used so-called

closed workload where client can send a next

request only when server has completed the

previous one.

• Load Balancer: server which forwards requests to

one of the Web Servers. The time for forwarding is

negligible.

• WebServer 1 and WebServer 2: servers which run

the Joomla installation and perform main part of

request processing. Times to process single request

by these servers are TWS1 and TWS2 respectively.

For convenience in our models we use inverse

values called service rates: RateWS1=TWS1
-1

 and

RateWS2= TWS2
-1

.

• Database: server which runs MySql installation.

Service rate for this server is RateDB.

The rates have been defined through a normalization

procedure described later. In the next sections we’ll

show how these entities are mapped to model

elements.

6.1 LQN Model

In LQN model every entity derived above from

the system architecture is mapped directly to a task

element. Since tasks are running on processors and

contain entries we have to define two more kinds of

elements to complete the model. Graphical notation

of the resulting model is shown on Figure 3. Every

task is mapped to processor (circle) and contains

entry which consumes processor time. Web Server 2

is shown with two tasks to reflect its Core2Duo CPU.

Time demands for WebServer 1, WebServer 2

and Database entries are defined as RateWS1
-1

,

RateWS2
-1

, RateDB
-1

 respectively. The demands for

Clients and Load Balancer entries are negligible.

Figure 3. LQN Model of Test System

6.2 PEPA Model

In case of PEPA model system entities are

mapped to components. Every component runs

infinitely and cooperates with other ones through

synchronizing actions. Also in PEPA model there is

no need to implement Load Balancer directly – in

can be realized implicitly through choice cooperator

of the client component. Full PEPA model is listed

below.

// Rate for intermediate actions
r=10000;
// Ratio of the requests to the WS_2.
d=0.7;
// CLIENT_0 – client, also reflects the presence of Load
balancer
CLIENT_0=(move,r).CLIENT_0_0;
CLIENT_0_0 =(move_2_0,d*r).CLIENT_0+
 (move_1_3,(1-d)*r).CLIENT_0;
// Core2Duo Web Server 2 with two cores

WS_2_0=(move_2_0,Τ).WS_2_0_0;
WS_2_0_0=(move_1_1,r).WS_2_0
+(move_1_2,r).WS_2_0;

T_1 = (move_1_1,Τ).(comp_1, RateWS2).

(move_db, Τ).T_1;

T_2 = (move_1_2,Τ).(comp_2, RateWS2).

(move_db, Τ).T_2;
// Web Server 1

WS_1 = (move_1_3, Τ).(comp_3, RateWS1).

(move_db, Τ).WS_1;
// Database
DB_0=(move_db, RateDB).DB_0
CLIENT_0[40]<move_2_0,move_1_3> ((WS_2_0 <move_1_1,
move_1_2> (T_1 <> T_2))<> WS_1) <move_db> DB_0

6.3 QPN Model

Elements of QPN formalism provide an easy way

to represent architecture entities [9]:

• Web Server 1, Web Server 2, DB Server are

mapped to queuing places with Processor-Sharing

(PS) scheduling strategy. The service rates of

places correspond to time demands of servers;

• Clients are mapped to queuing place with Infinite

Server (IS) scheduling strategy which is used to

represent clients sending requests to the system.

The service time of this place corresponds to the

average load;

• Thread pools of Web Servers are mapped to an

ordinary place.

Figure 4. QPN Model of Test System

Two types of tokens (token colors) are used in

the model for distinguishing requests between web

servers: x and y. In QPN model Load Balancer was

not implemented directly as it was done in PEPA.

This implementation was realized implicitly through

choice of immediate transition from a client request.

7. Models Calibration

Before starting models analysis we need to

define RateWS1, RateWS2 and RateDB parameters in our

models, i.e. calibrate our models. To accomplish it

we performed a measurement of the transaction

response time of the Web Server 2 with only one

virtual user. Received response time of overall CPU

load was about 0.6 second with average 35%

percentage. Taken into account that this server has

two cores and both of them equally participate in

handling requests (due to used module mod_fast_cgi

which starts several instances of PHP) the time to

handle the request by one core is 0.6*0.35*2=0.42

sec. This is Web Server CPU depended part of the

request processing and the estimation of the service

rate of another CPU can be received by normalizing

of this time to CPU frequency. For Web Server 1 we

received: 0.42/3.5*2.2 = 0.264 sec. Among the Web

Server CPU depended part of the request processing

there is another part, which takes 0.6-0.42=0.18 sec.

and it’s treated as Database processing time. The

rates of the models are defined as follows:

• RateWS1: 0.42-1 =2.38 sec-1

• RateWS2: 0.26
-1

 =3.78 sec-1

• RateDB: 0.18-1 =5.55 sec-1.

These values have been used in model analysis.

8. Models Analysis

During model analysis we made performance

predictions of the system behavior under different

external workload by varying number of clients

simultaneously sending requests to the system from 1

to 40. Every model has been analyzed with its

corresponding technique.

For LQN model we used spex utility, which is

included in LQNS package. This tool reads

parameterized LQN model, replaces parameter

names with parameter values and then solves the

model using lqns solver. Spex gathers measures of

interest and creates text report with obtained data.

During analysis of PEPA model we used

experimentation feature built-in in the PEPA

Workbench. It provides the same functionality for

PEPA models as spex for LQN models. Also has

graphical user interface and is able to build graphs

from gathered data.

Figure 5. Metrics for Configuration 3

Analysis of QPN model has been done by

SimQPN simulator of QPME package executed as a

standalone Java application. QPME doesn’t have any

possibilities to simulate parameterized QPN models.

That’s why we developed a Perl script to simulate

different workload by replacing parameters of QPN

model in a loop and extract essential data from

SimQPN output for further analysis.

Simulation results and experimental data for

infrastructure 3 with Load Balancer are presented on

Figure 5 and relative errors for all analyzed

configurations are shown on Figure 6. It can be seen

that our models are able to predict throughput

(transaction per second) of the system with higher

precision with errors less then 10%. While the

predictions for response time are less precise and

their errors are below 30%. The most possible reason

of these errors is an influence of an unrevealed

internal system structure. So it would be promising to

analyze the effect of hidden queue buffers and

request handle threads to model predictions.

It has been revealed that the fastest utility for

model simulation is lqns. From another point of view

QPME tool and PEPA Workbench provide

convenient GUI editors for model creation.

Figure 6. Relative Errors

9. Conclusion and Future Work

During this study we have created performance

models of the content management system “Joomla”

using three different software performance

description formalisms. Models have been calibrated

using measurements of the test system with single-

user workload. The comparison of the model

simulation results with experimental data obtained by

HP Load Runner has shown that all of the applied

techniques are able to predict system behavior

without detailed knowledge about the internal system

structure. Difference from model predictions and

experimental results lay in the acceptable area: for

throughput it’s less then 10%, for response time –

less then 30%. Such results make possible to use

model predictions during early performance analysis

of infrastructure for distributed business applications.

The investigation of errors caused by hidden

structure of system components and methods to

estimate them is the subject for further work.

10. References

[1] Bause F., “Queuing Petri Nets – a formalism for the

combined qualitative and quantitative analysis of systems”,

5th International Workshop on Petri Nets and

Performance Models, Toulouse(France), pp 14-23, 1993.

[2] Bause F., P. Buchholz, and P. Kemper. „Integrating

Software and Hardware Performance Models Using

Hierarchical Queuing Petri Nets”. In Proceedings of the 9.

ITG / GI - Fachtagung Messung, Modellierung und

Bewertung von Rechen- und Kommunikationssystemen,

(MMB’97), Freiberg (Germany), 1997.

[3] Benjamin C. Lee, David M. Brooks, Bronis R. de

Supinski, Martin Schulz, Karan Singh, Sally A. McKee,

“Methods of Inference and Learning for Performance

Modeling of Parallel Applications”, PPoPP’07, San Jose,

California, USA ,March 14–17, 2007.

[4] Franks G., S. Majumdar, J. Neilson, D. Petriu, J. Rolia,

and M. Woodside. “Performance analysis of distributed

server systems”, 6th Int. Conf. on Software Quality

(6ICSQ),pages 15-26, Ottawa, Canada, Oct. 1996.

[5] Gilmore S. and Tribastone M., “Evaluating the

Scalability of a Web Service-Based Distributed e-

Learning and Course Management System”, WS-FM 2006,

LNCS 4184, pp. 214–226, 2006.

[6] Hillston J., “A Compositional Approach to

Performance Modeling” Cambridge University Press,

1996.

[7] HP Load Runner, “HP essential knowledge series: an

introduction to load testing for web applications”, White

paper, 2007.

[8] Karlsson M., M.Covell, “Dynamic Black-Box

Performance Model Estimation for Self-Tuning

Regulators”, Proceedings of the Second International

Conference on Autonomic Computing (ICAC’05)

[9] Kounev S., “Performance Engineering of Distributed

Component-Based Systems – Benchmarking, Modeling

and Performance Prediction”, Shaker Verlag, 2005.

[10] Omari T., Franks G., Woodside M., Pan A., “Solving

Layered Queueing Networks of Large Client-Server

Systems with Symmetric Replication”, WOSP'05, July

12-14, 2005

[11] Yin L., S.Uttamchandani, R.Katz, “An Empirical

Exploration of Black-Box Performance Models for Storage

System”, 14th IEEE International Symposium on

Modeling, Analysis, and Simulation, 2006

[12] Apache HTTP Server, http://httpd.apache.org/

[13] CMS Joomla, http://www.joomla.org/

[14] Layered Queuing Network Solver software package,

http://www.sce.carleton.ca/rads/lqns/

[15] PEPA Workbench, http://www.dcs.ed.ac.uk/pepa/

[16] PHP, http://www.php.net/

[17] Queuing Petri net Modeling Environment, http://

sdq.ipd.uka.de/people/samuel_kounev/projects/QPME

